DOI QR코드

DOI QR Code

이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent

  • 투고 : 2022.12.07
  • 심사 : 2023.02.06
  • 발행 : 2023.02.28

초록

리튬이온 배터리(LIB) 제조를 위한 리튬의 사용이 점차 증가함에 따라 그에 따라 발생되는 리튬이온배터리 폐기가 증가될 것으로 사료된다. 이에 따라 폐배터리를 재활용을 하기위한 용매 추출을 통한 재활용에 대한 활발한 연구가 니켈, 코발트 및 망간과 같은 유가금속을 제거한 후 얻은 폐 용액에서 리튬의 회수가 중요하다. 본 연구에서는 폐이차전지 재활용공정 후 발생되는 폐액에서 리튬을 회수하기위해 추출제 Di-(2-ethylhexyl) hosphoricacid(D2EHPA)와 등유의 개질제 Tri-n-butyphosphate(TBP)를 선택적으로 혼합하여 추출조건을 최적화하였다. 폐액에는 리튬과 고농도의 나트륨(Li+ = 0.5% ~ 1%, Na+ = 3 ~ 6.5%)을 함유하고 있었으며, 리튬의 추출은 유기용매의 다른 구성에서 최종적으로 20% D2EHPA + 20% TBP + 60% 등유로 구성된 유기용매에서 효과적인 추출을 조건을 확립하였다. NaOH의 비누화를 이용한 SX 시스템에서는 평형 pH 4~4.5에서 유기 대 수성(O/A)이 5일 때 약 95% 이상의 리튬이 선택적으로 추출되는 것을 확인하였다. 적은 양의 나트륨으로 염화리튬에서 탄산리튬 분말을 얻기 위해 고순도 중탄산암모늄을 처리하였다. 최종적으로 처리된 탄산리튬에 여러번 세수를 통하여 미량의 나트륨을 제거하고 고순도 탄산리튬 분말(순도 99.2%)을 제조하였다. 따라서 본 연구를 통하여 폐이차전지 재활용공정에서 발생되는 폐액을 활용하여 탄산리튬의 효율적인 제조방법을 확인하였다.

Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

키워드

과제정보

This study was financed by the Ministry of SMEs and Startups, Korea technology and information promotion agency for SMEs. This is a research project supported by (TIPA) (S2877771, S3061392).

참고문헌

  1. Chen, W., and Ho, H., 2018 : Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods, Metals, 8, pp.321-337 https://doi.org/10.3390/met8050321
  2. Chu, S., Cui, Y., and Liu, N., 2017 : The path towards sustainable energy. Nat. Mater., 16, 16-22. https://doi.org/10.1038/nmat4834
  3. Zeng, X., Li, J., Singh, N., 2014 : Recycling of Spent Lithium-Ion Battery: A Critical Review, Crit. Rev. Environ. Sci. Technol., 44, pp.1129-1165. https://doi.org/10.1080/10643389.2013.763578
  4. U.S. Department of the Interior, 2013 : U.S. Mineral Commodity Summaries 2013, pp.46-47, U.S. Geological Survey, Reston.
  5. U.S. Department of the Interior, 2014 : Mineral Commodity Summaries 2014, pp.94-95, U.S. Geological Survey, Reston.
  6. U.S. Department of the Interior, 2015 : Mineral Commodity Summaries 2015, pp.7-8, U.S. Geological Survey, Reston.
  7. U.S. Department of the Interior, 2016 : Mineral Commodity Summaries 2016, pp.100-101, U.S. Geological Survey, Reston.
  8. U.S. Department of the Interior, 2017 : Mineral Commodity Summaries 2017, pp.100-102, U.S. Geological Survey, Reston.
  9. Richa, K., Babbitt, C.W., Nenadic, N.G., et al., 2017 : Environmental trade-offs across cascading lithium-ion battery life, Int. J. Life Cycle Assess., 22(1), pp.66-81. https://doi.org/10.1007/s11367-015-0942-3
  10. Melin, H.E., Rajaeifar, M.A., Ku, A.Y., et al., 2021 : Global Implications of the EU Battery Regulation, Science, 373, pp.384-387. https://doi.org/10.1126/science.abh1416
  11. Usai, L., Lamb, J.J., Hertwich, E., et al., 2022 : Analysis of the Li-Ion Battery Industry in Light of the Global Transition to Electric Passenger Light Duty Vehicles until 2050, Environ. Res. Infrastruct. Sustain., 2, pp.011002-0110014. https://doi.org/10.1088/2634-4505/ac49a0
  12. Gao, D.,Yu, X., Guo, Y., et al., 2015 : Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene. Chem. Res. Chin. Univ., 31, pp.621-626. https://doi.org/10.1007/s40242-015-4376-z
  13. Liu, X., Chen, X., He, L., et al., 2015 : Study on extraction of lithium from salt lake brine by membrane electrolysis Desalination, 376, pp.35-40. https://doi.org/10.1016/j.desal.2015.08.013
  14. Somrani, A., Hamzaoui, A., and Pontie, M., 2013 : Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination, 317, pp.184-192. https://doi.org/10.1016/j.desal.2013.03.009
  15. Medina, L., and El-Naggar, M., 1984 : An alternative method for the recovery of lithium from spodumene. Metall. Trans. B, 15, pp.725-726. https://doi.org/10.1007/BF02657295
  16. Georgi-Maschler T., Friedrich B., Weyhe R., et al., 2012 : Development of a recycling process for Li-ion batteries, J. Power Sources, 207, pp.173-182. https://doi.org/10.1016/j.jpowsour.2012.01.152
  17. Baea, H., and Kim Y., 2021 : Technologies of lithium recycling from waste lithium ion batteries: a review Mater. Adv., 2, pp.3234-3250. https://doi.org/10.1039/D1MA00216C
  18. Frohlich, P., Lorenz, T., Martin, G., et al., 2017 : Valuable Metals-Recovery Processes, Current Trends, and Recycling Strategies. Angew. Chem. Int. Ed., 56, pp.2544-2580. https://doi.org/10.1002/anie.201605417
  19. Chen, W., Lee, C. and Ho, H., 2018 : Purification of Lithium Carbonate from Sulphate Solutions through Hydrogenation Using Dowex G26 Resin, the Appl. Sci., 8, pp.2252-2260. https://doi.org/10.3390/app8112252
  20. Wang, F., Sun, R., Xu, J, et al., 2016 : Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction. RSC Adv., 88, pp.85303-85313. https://doi.org/10.1039/C6RA16801A
  21. Hung, S.H., Lin, C.F., Chiang, P.C., et al., 2014 : Recovery of m etal ions from spent Lithium Ion Batteries (LIBs) using sodium salts of D2EHPA or P507: Perform ance evaluation and life cycle assessm ent. Res. J. Chem . Environ., 18, pp.39-47
  22. Mantuano, D.P., Dorella, G., Elias, R.C.A., et al., 2006 : Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272. J. Power Sources, 159, pp. 1510-1518. https://doi.org/10.1016/j.jpowsour.2005.12.056
  23. An, J.W., Kang, D.J., Tran, K.T., et al., 2012 : Recovery of lithium from Uyuni salar brine, Hydrometallurgy, 117, pp.64-70. https://doi.org/10.1016/j.hydromet.2012.02.008
  24. Nguyen, T.H., and Lee, M.S., 2018 : A Review on the Separation of Lithium Ion from Leach Liquors of Primary and Secondary Resources by Solvent Extraction with Commercial Extractants, Processes 2018, 6, pp.55-70. https://doi.org/10.3390/pr6050055
  25. Hano, T., Matsumoto, M., Ohtake, T., et al., 1992 : Recovery of lithium from geothermal water by solvent extraction technique, Solvent Extr. Ion Exch., 10, pp.195-206. https://doi.org/10.1080/07366299208918100
  26. Zhang, G., Qin, W., Tan, Y., et al., 2010 : Separation of magnesium and lithium by solvent extraction using di-(2-ethylhexyl) phosphoric acid (D2EHPA), Qinghua Daxue Xuebao, 50, pp.430-433.
  27. Mercken, J., Li, X., Riaño, S., et al., 2019 : Efficient and Sustainable Removal of Magnesium from Brines for Lithium/Magnesium Separation Using Binary Extractants, ACS Sustainable Chem. Eng., 7, pp.19225-19234 https://doi.org/10.1021/acssuschemeng.9b05436
  28. Virolainen, S., Fallah Fini, M., Miettinen, V., et al., 2016 : Removal of calcium and magnesium from lithium brine concentrate via continuous counter-current solvent extraction, Hydrometallurgy, 162, pp.9-15 https://doi.org/10.1016/j.hydromet.2016.02.010
  29. Zahraie, N., 2021 : Study of Solvent Extraction for Metal Recovery during Lithium-Ion Batteries (LIBs) Recycling Process, Master thesis, NTNU, march 2021.
  30. Sohr, J., 2017 : IUPAC-NIST Solubility Data Series. 104. Lithium Sulfate and its Double Salts in Aqueous Solutions, Journal of Physical and Chemical Reference Data, 46(2), pp.023101.
  31. Ryabtsev, A.D., Menzhetes, L.T., Kurakov, A.A., et al., 2006 : Interaction of Ammonium Bicarbonate with Lithium Chloride Solutions, Theoretical Foundations of Chemical Engineering, 41(6), pp.649-654.  https://doi.org/10.1134/S0040579506060157