DOI QR코드

DOI QR Code

Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete

  • Weiping Zhang (Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University) ;
  • Hui Liu (Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University) ;
  • Yong Zhou (Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University) ;
  • Kaixing Liao (Department of Structural Engineering, Tongji University) ;
  • Ying Huang (Suzhou Nuclear Power Research Institute Co., Ltd.)
  • Received : 2022.09.10
  • Accepted : 2023.03.17
  • Published : 2023.06.25

Abstract

The aggregate-forming minerals in concrete undergo volume swelling and microstructure change under neutron irradiation, leading to degradation of physical and mechanical properties of the aggregates and concrete. A comprehensive investigation of volume change and elastic property variation of major aggregate-forming minerals is still lacking, so molecular dynamics simulations have been employed in this paper to improve the understanding of the degradation mechanisms. The results demonstrated that the densities of the selected aggregate-forming minerals of similar atomic structure and chemical composition vary in a similar trend with deposited energy due to the similar amorphization mechanism. The elastic tensors of all silicate minerals are almost isotropic after saturated irradiation, while those of irradiated carbonate minerals remain anisotropic. Moreover, the elastic modulus ratio versus density ratio of irradiated minerals is roughly following the density-modulus scaling relationship. These findings could further provide basis for predicting the volume and elastic properties of irradiated concrete aggregates in nuclear facilities.

Keywords

Acknowledgement

The authors sincerely thank the anonymous reviewers for their thorough reviews and constructive comments and the editors for their selfless contributions in the manuscript processing.

References

  1. K.G. Field, I. Remec, Y. Le Pape, Radiation effects in concrete for nuclear power plants - Part I: quantification of radiation exposure and radiation effects, Nucl. Eng. Des. 282 (2015) 126-143, 10/f6zkxv. 10/f6zkxv
  2. Y. Le Pape, K.G. Field, I. Remec, Radiation effects in concrete for nuclear power plants, Part II: perspective from micromechanical modeling, Nucl. Eng. Des. 282 (2015) 144-157, 10/f6zng4. 10/f6zng4
  3. Y. Le Pape, Structural effects of radiation-induced volumetric expansion on unreinforced concrete biological shields, Nucl. Eng. Des. 295 (2015) 534-548, 10/f75fbs. 10/f75fbs
  4. M.L.D. Gougar, B.E. Scheetz, D.M. Roy, Ettringite and C-S-H Portland cement phases for waste ion immobilization: a review, Waste Manage. (Tucson, Ariz.) 16 (1996) 295-303, https://doi.org/10.1016/S0956-053X(96)00072-4.
  5. H. Hilsdorf, J. Kropp, H. Koch, The effects of nuclear radiation on the mechanical properties of concrete, SP (Sci. Prog.) 55 (1978) 223-254.
  6. I. Maruyama, O. Kontani, M. Takizawa, S. Sawada, S. Ishikawa, J. Yasukouchi, O. Sato, J. Etoh, T. Igari, Development of soundness assessment procedure for concrete members affected by neutron and gamma-ray irradiation, J. Adv. Concr. Technol. 15 (2017) 440-523, 10/gh6gn6. 10/gh6gn6
  7. A. Denisov, V. Dubrovskii, V. Solovyov, Radiation Resistance of Mineral and Polymer Construction Materials, ZAO MEI Publ. House, Moscow, 2012.
  8. Y. Le Pape, M.H.F. Alsaid, A.B. Giorla, Rock-forming minerals radiation-induced volumetric expansion - revisiting literature data, J. Adv. Concr. Technol. 16 (2018) 191-209, 10/ghdf5q. 10/ghdf5q
  9. C.M. Silva, T.M. Rosseel, K.S. Holliday, Radiation-induced changes in single crystal calcite and dolomite: mineral analogues of light water reactor, nuclear power plant concrete aggregates, J. Phys. Chem. C 126 (2022) 634-646, https://doi.org/10.1021/acs.jpcc.1c08567.
  10. Y. Le Pape, A. Giorla, J. Sanahuja, Combined effects of temperature and irradiation on concrete damage, J. Adv. Concr. Technol. 14 (2016) 70-86, 10/gh6gng. 10/gh6gng
  11. T.M. Rosseel, I. Maruyama, Yann Le Pape, O. Kontani, A.B. Giorla, I. Remec, J.J. Wall, M. Sircar, C. Andrade, M. Ordonez, Review of the current state of knowledge on the effects of radiation on concrete, J. Adv. Concr. Technol. 14 (2016) 368-383, 10/ghdfzx. https://doi.org/10.3151/jact.14.368
  12. Y. Le Pape, J. Sanahuja, M.H.F. Alsaid, Irradiation-induced damage in concreteforming aggregates: revisiting literature data through micromechanics, Mater. Struct. 53 (2020) 62, 10/gh6gmk.
  13. W. Primak, Fast-neutron-induced changes in quartz and vitreous silica, Phys. Rev. 110 (1958) 1240-1254, 10/ccdnpk. https://doi.org/10.1103/PhysRev.110.1240
  14. B. Wang, N.M.A. Krishnan, Y. Yu, M. Wang, Y. Le Pape, G. Sant, M. Bauchy, Irradiation-induced topological transition in SiO2: structural signature of networks' rigidity, J. Non-Cryst. Solids 463 (2017) 25-30, 10/gmbjch. 10
  15. T.M. Rosseel, M.N. Gussev, L.F. Mora, The effects of neutron irradiation on the mechanical properties of mineral analogues of concrete aggregates, in: Proc. 18th. Int. Conf. Environmental Degradation Mater. Nucl. Power Syst.-Water React., Springer, New York, 2018, pp. 151-161, https://doi.org/10.1007/978-3-319-68454-3\_14.
  16. C.M. Silva, T.M. Rosseel, M.C. Kirkegaard, Radiation-induced changes in quartz, a mineral analog of nuclear power plant concrete aggregates, Inorg. Chem. 57 (2018) 3329-3338, 10/gdbkb8. 10/gdbkb8
  17. N. Okada, T. Ohkubo, I. Maruyama, K. Murakami, K. Suzuki, Characterization of irradiation-induced novel voids in a-quartz, AIP Adv. 10 (2020), 125212, 10/gmbjb7. 10/gmbjb7
  18. V.N. Bykov, A.V. Denisov, V.B. Dubrovskii, V.V. Korenevskii, G.K. Krivokoneva, L.P. Muzalevskii, Effect of irradiation temperature on the radiation expansion of quartz, At. Energy. 51 (1981) 593-595, 10/d5m9tp. 10/d5m9tp
  19. N.M.A. Krishnan, Y. Le Pape, G. Sant, M. Bauchy, Effect of irradiation on silicate aggregates' density and stiffness, J. Nucl. Mater. 512 (2018) 126-136, 10/gfn2sw. 10/gfn2sw
  20. S. Zhou, J.W. Ju, The damage and healing of quartz under radiation at high temperatures, Int. J. Damage Mech. 29 (2020) 923-942, 10/gmbjcj. https://doi.org/10.1177/1056789519894547
  21. N.M.A. Krishnan, Y.L. Pape, G. Sant, M. Bauchy, Disorder-induced expansion of silicate minerals arises from the breakage of weak topological constraints, J. Non-Cryst. Solids 564 (2021), 120846, 10/gjp5d4. 10/gjp5d4
  22. Y.-H. Hsiao, B. Wang, E.C. La Plante, I. Pignatelli, N.M.A. Krishnan, Y. Le Pape, N. Neithalath, M. Bauchy, G. Sant, The effect of irradiation on the atomic structure and chemical durability of calcite and dolomite, Npj Mater. Degrad. 3 (2019), 10/gh6gnm.
  23. L. Levien, C.T. Prewitt, D.J. Weidner, Structure and elastic properties of quartz at pressure, Am. Mineral. 65 (1980) 920-930.
  24. T. Armbruster, H.B. Buergi, M. Kunz, E. Gnos, S. Broenniman, C. Lienert, Variation of displacement parameters in structure refinements of low albite, Am. Mineral. 75 (1990) 135-140.
  25. R.J. Angel, High-pressure structure of anorthite, Am. Mineral. 73 (1988) 1114-1119.
  26. D.R. Allan, R.J. Angel, A high-pressure structural study of microcline (KAlSi3O8) to 7 GPa, Eur. J. Mineral (1997) 263-276, 10/gppr7b. 10/gppr7b
  27. K. Tomita, K. Shiraki, M. Kawano, Crystal structure of dehydroxylated 2m1 sericite and its relationship with mixed-layer mica/smectite, Clay Sci. 10 (1998) 423-441, 10/gppr7g. 10/gppr7g
  28. P.F. Zanazzi, M. Montagnoli, S. Nazzareni, P. Comodi, Structural effects of pressure on triclinic chlorite: a single-crystal study, Am. Mineral. 91 (2006) 1871-1878, 10/cwcf9w. 10/cwcf9w
  29. S.A. Markgraf, R.J. Reeder, High-temperature structure refinements of calcite and magnesite, Am. Mineral. 70 (1985) 590-600.
  30. R.J. Reeder, S.A. Markgraf, High-temperature crystal chemistry of dolomite, Am. Mineral. 71 (1986) 795-804.
  31. R.K. Eby, R.C. Ewing, R.C. Birtcher, The amorphization of complex silicates by ion-beam irradiation, J. Mater. Res. 7 (1992) 3080-3102, 10/ckcpqw. 10/ckcpqw
  32. M.A.T.M. Broekmans, Structural properties of quartz and their potential role for ASR, Mater. Char. 53 (2004) 129-140, https://doi.org/10.1016/j.matchar.2004.08.010.
  33. M.E. Fleet, Rock-forming Minerals, ume 3A, Micas., Geological Soc. Publishing House, 2003. https://www.cabdirect.org/cabdirect/abstract/20043197867. (Accessed 16 March 2022).
  34. R.T. Cygan, J.A. Greathouse, A.G. Kalinichev, Advances in clayff molecular simulation of layered and nanoporous materials and their aqueous interfaces, J. Phys. Chem. C 125 (2021) 17573-17589, https://doi.org/10.1021/acs.jpcc.1c04600.
  35. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19, 10/cw7cjf. 10/cw7cjf
  36. N.M.A. Krishnan, B. Wang, G. Sant, J.C. Phillips, M. Bauchy, Revealing the effect of irradiation on cement hydrates: evidence of a topological self-organization, ACS Appl. Mater. Interfaces 9 (2017) 32377-32385, 10/gmbjdn. 10/gmbjdn
  37. Y.-H. Hsiao, E.C. La Plante, N.M.A. Krishnan, Y. Le Pape, N. Neithalath, M. Bauchy, G. Sant, Effects of irradiation on albite's chemical durability, J. Phys. Chem. A 121 (2017) 7835-7845, 10/gb2bvq. 10/gb2bvq
  38. Y.-H. Hsiao, E.C. La Plante, N.M.A. Krishnan, H.A. Dobbs, Y. Le Pape, N. Neithalath, M. Bauchy, J. Israelachvili, G. Sant, Role of electrochemical surface potential and irradiation on garnet-type almandine's dissolution kinetics, J. Phys. Chem. C 122 (2018) 17268-17277, 10/gd3shp. 10/gd3shp
  39. N.M.A. Krishnan, B. Wang, Y. Yu, Y. Le Pape, G. Sant, M. Bauchy, Enthalpy landscape dictates the irradiation-induced disordering of quartz, Phys. Rev. X. 7 (2017), 031019, 10/gk588g. 10/gk588g
  40. N.M.A. Krishnan, B. Wang, Y. Le Pape, G. Sant, M. Bauchy, Irradiation- vs. vitrification-induced disordering: the case of α-quartz and glassy silica, J. Chem. Phys. 146 (2017), 204502, 10/gk585x. 10/gk585x
  41. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984) 3684-3690, 10/bkmb4b. 10/bkmb4b
  42. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, Reaxff: a reactive force field for hydrocarbons, J. Phys. Chem. A 105 (2001) 9396-9409, 10/cnh4rg. 10/cnh4rg
  43. J. Du, Challenges in Molecular Dynamics Simulations of Multicomponent Oxide Glasses, Springer Int. Publishing, Cham, 2015, https://doi.org/10.1007/978-3-319-15675-0_7.
  44. R.T. Cygan, J.-J. Liang, A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B 108 (2004) 1255-1266, 10/dtkfct. 10/dtkfct
  45. K. Trachenko, Understanding resistance to amorphization by radiation damage, J. Phys. Condens. Matter 16 (2004) R1491-R1515, 10/dp5kmj. 10/dp5kmj
  46. N.M.A. Krishnan, B. Wang, Y. Le Pape, G. Sant, M. Bauchy, Irradiation-driven amorphous-to-glassy transition in quartz: the crucial role of the mediumrange order in crystallization, Phys. Rev. Mater. 1 (2017), 053405, 10/gpp2mz. 10/gpp2mz
  47. Y. Yu, B. Wang, M. Wang, G. Sant, M. Bauchy, Reactive molecular dynamics simulations of sodium silicate glasses-toward an improved understanding of the structure, Int. J. Appl. Glass Sci. 8 (2017) 276-284, 10/gbwv5n. 10/gbwv5n
  48. N.M.A. Krishnan, R. Ravinder, R. Kumar, Y.L. Pape, G. Sant, Density-stiffness scaling in minerals upon disordering: irradiation vs. vitrification, Acta Mater. 166 (2019) 611-617. https://doi.org/10.1016/j.actamat.2019.01.015
  49. J.F. Ziegler, J.P. Biersack, The stopping and range of ions in matter, in: D.A. Bromley (Ed.), Treatise on Heavy-Ion Science, Springer US, Boston, MA, 1985, pp. 93-129, https://doi.org/10.1007/978-1-4615-8103-1_3.
  50. D. Hou, Z. Li, Molecular dynamics study of water and ions transport in nanopore of layered structure: a case study of tobermorite, Microporous Mesoporous Mater. 195 (2014) 9-20, 10/f57sgh. 10/f57sgh
  51. D. Hou, Z. Li, Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: case study of jennite, J. Mater. Civ. Eng. 26 (2014) 930-940, 10/f5zkjz. 10/f5zkjz
  52. D. Ebrahimi, R.J.-M. Pellenq, A.J. Whittle, Nanoscale elastic properties of montmorillonite upon water adsorption, Langmuir 28 (2012) 16855-16863, 10/f4fggn. 10/
  53. P. Raiteri, J.D. Gale, D. Quigley, P.M. Rodger, Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: a new model for the calcitewater interface, J. Phys. Chem. C 114 (2010) 5997-6010, 10/bk57cp. 10/bk57cp
  54. P. Raiteri, R. Demichelis, J.D. Gale, Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation, J. Phys. Chem. C 119 (2015) 24447-24458, 10/f7w4wg. 10/f7w4wg
  55. A.K. Varshneya, Fundamentals of Inorganic Glasses, Elsevier, 2013.
  56. V.G. Zubov, A.T. Ivanov, Elasticity of quartz irradiated with fast neutrons, Sov. Phys.-Cryst. (Engl. Transl.) 12 (1967) 313e314. https://www.osti.gov/biblio/4231374. (Accessed 16 February 2021).
  57. I. Maruyama, S. Muto, Change in relative density of natural rock minerals due to electron irradiation, J. Adv. Concr. Technol. 14 (2016) 706-716, 10/gh6gnh. 10/gh6gnh
  58. H. Nagabhushana, S.C. Prashantha, B.M. Nagabhushana, B.N. Lakshminarasappa, F. Singh, Damage creation in swift heavy ionirradiated calcite single crystals: Raman and Infrared study, Spectrochim. Acta, Part A 71 (2008) 1070-1073, 10/fnzmqz. 10/fnzmqz
  59. M. Wencka, S. Lijewski, S.K. Hoffmann, Dynamics of CO2-radiation defects in natural calcite studied by ESR, electron spin echo and electron spin relaxation, J. Phys. Condens. Matter 20 (2008), 255237, 10/fksv6pp. 10/fksv6pp
  60. R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A. 65 (1952) 349-354, 10/bqdht4. 10/bqdht4
  61. V.N. Luu, K. Murakami, H. Samouh, I. Maruyama, T. Ohkubo, P.P. Tom, L. Chen, S. Kano, H. Yang, H. Abe, K. Suzuki, M. Suzuki, Changes in properties of alpha-quartz and feldspars under 3 MeV Si-ion irradiation, J. Nucl. Mater. 545 (2021), 152734, 10/gh6gmp. 10/gh6gmp
  62. L.W. Hobbs, The role of topology and geometry in the irradiation-induced amorphization of network structures, J. Non-Cryst. Solids 182 (1995) 27-39, 10/bdj66s. 10/bdj66s
  63. D.W. Hobbs, Influence of aggregate restraint on the shrinkage of concrete, J. 71 (1974) 445-450, 10/gmbjdv.
  64. M. Bauchy, M.J. Abdolhosseini Qomi, C. Bichara, F.-J. Ulm, R.J.-M. Pellenq, Nanoscale structure of cement: viewpoint of rigidity theory, J. Phys. Chem. C 118 (2014) 12485-12493, 10/f56vtt. 10/f56vtt
  65. G. Krivokoneva, Structural changes in feldspars under impact of radiation, Crystal Chem. Struct. Feat. Miner. (1976) 75-79.
  66. S.K. Lee, J.F. Stebbins, The degree of aluminum avoidance in aluminosilicate glasses, Am. Mineral. 84 (1999) 937-945, https://doi.org/10.2138/am-1999-5-631.