DOI QR코드

DOI QR Code

A GPU-based point kernel gamma dose rate computing code for virtual simulation in radiation-controlled area

  • Zhihui Xu (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Mengkun Li (Shenzhen Polytechnic) ;
  • Bowen Zou (Hangzhou Institute of Technology, Xidian University) ;
  • Ming Yang (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
  • 투고 : 2022.05.23
  • 심사 : 2023.03.15
  • 발행 : 2023.06.25

초록

Virtual reality technology has been widely used in the field of nuclear and radiation safety, dose rate computing in virtual environment is essential for optimizing radiation protection and planning the work in radioactive-controlled area. Because the CPU-based gamma dose rate computing takes up a large amount of time and computing power for voxelization of volumetric radioactive source, it is inefficient and limited in its applied scope. This study is to develop an efficient gamma dose rate computing code and apply into fast virtual simulation. To improve the computing efficiency of the point kernel algorithm in the reference (Li et al., 2020), we design a GPU-based computing framework for taking full advantage of computing power of virtual engine, propose a novel voxelization algorithm of volumetric radioactive source. According to the framework, we develop the GPPK(GPU-based point kernel gamma dose rate computing) code using GPU programming, to realize the fast dose rate computing in virtual world. The test results show that the GPPK code is play and plug for different scenarios of virtual simulation, has a better performance than CPU-based gamma dose rate computing code, especially on the voxelization of three-dimensional (3D) model. The accuracy of dose rates from the proposed method is in the acceptable range.

키워드

과제정보

This Work or This Article is Supported by the Funding from Guangdong Soft Science Research Programme (Grant No. 2022A0505050007). The anonymous reviewers have contributed considerably to the publication of this paper.

참고문헌

  1. ICRP, Recommendations of the international commission on radiological protection, ICRP publication 60. Ann. ICRP 21 (1-3) (1991).
  2. V.G.G. Freitas, A. Carlos de Abreu Mol, R. Shirru, Virtual reality for operational procedures in radioactive waste deposits, Prog. Nucl. Energy 71 (2014) 225-231. https://doi.org/10.1016/j.pnucene.2013.11.003
  3. Y. Iguchi, M.N. Louka, T. Johnsen, VRdose: an exposure dose evaluation system based on virtual reality technology - current status and future possibilities, in: 2004 Enlarged Halden Programme Group Meeting, 2004.
  4. A.C.A. Mol, C.A.F. Jorge, P.M. Couto, et al., Virtual environments simu-lationfor dose assessment in nudlear plants, Prog. Nucl. Energy 51 (2) (2009) 382-387. https://doi.org/10.1016/j.pnucene.2008.04.003
  5. Z.D. Tang, et al., Real-time dose assessment and visualization of radiation field for EAST tokamak Fusion, Eng. Des. 85 (2010), 1591-4.
  6. K.S. Jeong, B.S. Choi, J.K. Moon, Real-time assessment of exposure dose to workers in radiological environments during decommissioning of nuclear facilities Ann, Nucl. Energy 73 (2014), 441-5. https://doi.org/10.1016/j.anucene.2014.07.027
  7. S. Zhu, J. Cao, S. Fang, X. Dong, W. Li, X. Liu, et al., 3-D Gamma Dose Rate Reconstruction for a Radioactive Waste Processing Facility Using Sparse and Arbitrarily-Positioned Measurements, 2021.
  8. K.V. Subbaiah, L. Thilagam, R. Sarangapani, D.K. Mohapatra, An inverse calculation technique for optimization of gamma ray shielding designs, Ann. Nucl. Energy 57 (jul) (2013) 246-255. https://doi.org/10.1016/j.anucene.2013.01.053
  9. M.K. Li, Y.K. Liu, M.J. Peng, C.L. Xie, L.Q. Yang, A fast simulation method for radiation maps using interpolation in a virtual environment, J. Radiol. Prot. 38 (2018) 892-907. https://doi.org/10.1088/1361-6498/aac392
  10. Z. Wang, J. Cai, Inversion of radiation field on nuclear facilities: a method based on net function interpolation, Radiat. Phys. Chem. 153 (2018) 27-34. https://doi.org/10.1016/j.radphyschem.2018.09.003
  11. Z. Wang, J. Cai, Reconstruction of the neutron radiation field on nuclear facilities near the shield using Bayesian inference, Prog. Nucl. Energy 118 (2020), 103070.
  12. B.A. Khuwaileh, W.A. Metwally, Gaussian process approach for dose mapping in radiation fields, Nucl. Eng. Technol. 52 (2020) 1807-1816. (Khuwaileh and Metwally). https://doi.org/10.1016/j.net.2020.01.013
  13. W. Lyu, W. Ran, J. Liu, J. Zhang, J. Xiong, Development and validation of rapid 3d radiation field evaluation technique for nuclear power plants, Science and Technology of Nuclear Installations 2020 (2020) 1-7. https://doi.org/10.1155/2020/8815650
  14. W. Wang, J. Cao, L. Zhang, F. Xie, OPTIMIZATION OF THE RADIATION SHIELDING PROGRAM QAD 9, 2016.
  15. O. Vela, E. de Burgos, J.M. Perez, Dose rate assessment in complex geometries, IEEE Trans. Nucl. Sci. 53 (2006) 304-311, https://doi.org/10.1109/TNS.2006.869831.
  16. K.V. Subbaiah, R. Sarangapani, IGSHIELD: a new interactive point kernel gamma ray shielding code, Ann. Nucl. Energy 35 (12) (2008) 2234-2242. https://doi.org/10.1016/j.anucene.2008.09.007
  17. L.Q. Yang, Y.K. Liu, M.J. Peng, M.K. Li, N. Chao, A Fast Gamma-Ray Dose Rate Assessment Method for Complex Geometries Based on Stylized Model Reconstruction, Nuclear Engineering and Technology, 2019a.
  18. L.Q. Yang, Y.K. Liu, M.J. Peng, et al., A gamma-ray dose rate assessment method for arbitrary shape geometries based on voxelization algorithm, Radiat. Phys. Chem. 158 (2019b) 122-130. https://doi.org/10.1016/j.radphyschem.2019.02.015
  19. M.K. Hansda, S. Mammen, 3DGShield: a new 3D gamma ray shielding code for arbitrary source and shield geometry based on point kernel technique, Ann. Nucl. Energy 159 (2) (2021), 108352.
  20. S.M. Kulwinder, S.,M. Sukhmanjit, Py-mlbuf: development of an online-platform for gamma-ray shielding calculations and investigations, Ann. Nucl. Energy 150 (2021).
  21. ANSI/ANS-6, 4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society, La Grange Park in Illinois, 1991.
  22. ANS-6.1.1 Working Group, M.E. Battat, American National Standard Neutron and Gamma-Ray Flux-To-Dose Rate Factors, ANSI/ANS-6.1.1-1977 (N666), American Nuclear Society, LaGrange Park, Illinois, 1977.
  23. ICRP Committee 3 Task Group, P. Grande, M.C. O'Riordan, Data for Protection against Ionizing Radiation from External Sources: Supplement to ICRP Publication 15, ICRP-21, International Commission on Radiological Protection, Pergamon Press, 1971.
  24. Y. Harima, An approximation of gamma ray buildup factor by modified geometric progression, Nucl. Sci. Eng. 83 (1983) 299-309. https://doi.org/10.13182/NSE83-A18222
  25. M.K. Li, Z.H. Xu, et al., MIGSHIELD: a new model-based interactive point kernel gamma ray shielding package for virtual environment, Nucl. Eng. Technol. 52 (2020) 1557-1564. https://doi.org/10.1016/j.net.2019.12.026
  26. T. Molto Caracena, E. Vendrell Vidal, J.G.M. Goncalves, P. Peerani, A KD-trees based method for fast radiation source representation for virtual reality dosimetry applications in nuclear safeguards and security, Prog. Nucl. Energy 95 (2017) 78-83, https://doi.org/10.1016/j.pnucene.2016.12.001.
  27. A.A. Mol, C.M.N.A. Pereira, et al., Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques, Ann. Nucl. Energy 38 (2-3) (2011) 705-712. https://doi.org/10.1016/j.anucene.2010.08.008
  28. Monte Carlo Team, MCNP-A General Purpose Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987, Los Alamos National Laboratory, 2003.
  29. E.T. Norris, X. Liu, H. Jiang, Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method, Med. Phys. 42 (7) (2015) 4080.
  30. I.M. Prokhorets, S.I. Prokhorets, et al., Point Kernel method for radiation fields simulation, Probl. At. Sci. Technol. 48 (2007) 106.