DOI QR코드

DOI QR Code

The hepatoprotective effects of silkworm: Insights into molecular mechanisms and implications

  • Young-Min Han (College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University) ;
  • Da-Young Lee (College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University) ;
  • Moon-Young Song (College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University) ;
  • Seung-Won Lee (College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University) ;
  • Eun-Hee Kim (College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University)
  • Received : 2023.05.24
  • Accepted : 2023.06.23
  • Published : 2023.06.30

Abstract

The liver, a multifunctional organ, plays a vital role in maintaining overall health and well-being by regulating metabolism, detoxification, nutrient storage, hormone balance, and immune function. Liver diseases, such as hepatitis, cirrhosis, fatty liver disease, and liver cancer, have significant clinical implications and remain a global health concern. This article reviews the therapeutic potential of silkworm larvae (Bombyx mori) and explores their underlying molecular mechanisms in protecting against liver diseases. Silkworm larvae are rich in proteins, vitamins, minerals, and n-3 fatty acids, making them a promising candidate for therapeutic applications. The anti-inflammatory mechanisms of silkworm larvae involve modulating the production of cytokine such as TNF-α and interleukins, inflammatory enzymes including cyclooxygenase-2 and macrophage polarization, thereby attenuating liver inflammation. Silkworm larvae also exhibit anti-oxidative effects by scavenging free radicals, reducing intracellular reactive oxygen species and enhancing the liver's antioxidant defense system. Moreover, silkworms have been reported to decrease the serum alcohol concentration and lipid accumulation. Understanding the therapeutic properties of silkworm larvae contributes to the development of innovative strategies for liver injury prevention and treatment. Further research is warranted to elucidate the precise signaling pathways involved in the anti-inflammatory and anti-oxidative effects of silkworm larvae, paving the way for potential therapeutic interventions in liver diseases.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ017032)" Rural Development Administration, Republic of Korea.

References

  1. Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R (2021) Cellular mechanisms of liver fibrosis. Front Pharmacol 12, 671640.
  2. Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F, et al. (2010) TAK1 suppresses a NEMO-dependent but NF-κB-independent pathway to liver cancer. Cancer cell 17, 481-496. https://doi.org/10.1016/j.ccr.2010.03.021
  3. Breuhahn K, Longerich T, Schirmacher P (2006) Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 25, 3787-3800. https://doi.org/10.1038/sj.onc.1209556
  4. Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114, 147-152. https://doi.org/10.1172/JCI200422422
  5. Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20, 98-105. https://doi.org/10.1097/MOL.0b013e328328d0a4
  6. Cho HD, Min HJ, Won YS, Ahn HY, Cho YS, Seo KI (2019) Solid state fermentation process with Aspergillus kawachii enhances the cancer-suppressive potential of silkworm larva in hepatocellular carcinoma cells. BMC Complement Altern Med 19, 241.
  7. Cho JM, Hong KS, Lee DY, Kim G, Ji SD, Kim EH (2016a) Protective effect of silkworm (Bombyx mori) powder against diethylnitrosamine induced hepatotoxicity in mice. Food Eng Prog 20, 342-348. https://doi.org/10.13050/foodengprog.2016.20.4.342
  8. Cho JM, Kim KY, Ji SD, Kim EH (2016b) Protective Effect of Boiled and Freeze-dried Mature Silkworm Larval Powder Against Diethylnitrosamine-induced Hepatotoxicity in Mice. J Cancer Prev 21, 173-181. https://doi.org/10.15430/JCP.2016.21.3.173
  9. Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12, 584-596. https://doi.org/10.1038/nrclinonc.2015.105
  10. Deori M, Boruah DC, Devi D, Devi R (2014) Antioxidant and antigenotoxic effects of pupae of the muga silkworm Antheraea assamensis. Food Biosci 5, 108-114. https://doi.org/10.1016/j.fbio.2013.12.001
  11. Elsebaie EM, Abdel-Fattah AN, Bakr NA, Attalah KM, Aweas AHA (2023) Principles of Nutritional Management in Patients with Liver Dysfunction-A Narrative Review. Livers 3, 190-218. https://doi.org/10.3390/livers3020013
  12. Fan JB, Wu LP, Chen LS, Mao XY, Ren FZ (2009) Antioxidant activities of silk sericin from silkworm Bombyx mori. J Food Biochem 33, 74-88.
  13. Friedman SL (1999). Cytokines and fibrogenesis. Seminars in liver disease, © 1999 by Thieme Medical Publishers, Inc.
  14. Fukata M, Abreu MT (2008) Role of Toll-like receptors in gastrointestinal malignancies. Oncogene 27, 234-243. https://doi.org/10.1038/sj.onc.1210908
  15. Gluchowski NL, Becuwe M, Walther TC, Farese Jr RV (2017) Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 14, 343-355. https://doi.org/10.1038/nrgastro.2017.32
  16. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7, 793-807. https://doi.org/10.2741/gressner
  17. Hong KS, Yun SM, Cho JM, Lee DY, Ji SD, Son JG, et al. (2018) Silkworm (Bombyx mori) powder supplementation alleviates alcoholic fatty liver disease in rats. J Funct Foods 43, 29-36. https://doi.org/10.1016/j.jff.2018.01.018
  18. Ikejima K, Takei Y, Honda H, Hirose M, Yoshikawa M, Zhang YJ, et al. (2002) Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology 122, 1399-1410. https://doi.org/10.1053/gast.2002.32995
  19. Ji SD, Kim NS, Kweon HY, Choi BH, Kim KY, Koh YH (2016a) Nutrition composition differences among steamed and freeze-dried mature silkworm larval powders made from 3 Bombyx mori varieties weaving different colored cocoons. Int J Indust Entomol 33, 6-14. https://doi.org/10.7852/ijie.2016.33.1.6
  20. Ji SD, Kim NS, Kweon HY, Choi BH, Yoon SM, Kim KY, et al. (2016b) Nutrient compositions of Bombyx mori mature silkworm larval powders suggest their possible health improvement effects in humans. J Asia-Pac Entomol 19, 1027-1033. https://doi.org/10.1016/j.aspen.2016.08.004
  21. Kang FB, Wang L, Jia HC, Li D, Li HJ, Zhang YG, et al. (2015) B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int 15, 45.
  22. Kang PD, Lee SU, Jung IY, Shon BH, Kim YS, Kim KY, et al. (2007) Breeding of New Silkworm Variety Golden silk, a Yellow Cocoon Color for Spring Rearing Season. Korean J Ser Sci 49, 14-17.
  23. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441, 431-436. https://doi.org/10.1038/nature04870
  24. Kim YS, Kim KY, Kang PD, Cha JY, Heo JS, Park BK, et al. (2008) Effect of silkworm (Bombyx mori) excrement powder on the alcoholic hepatotoxicity in rats. J Life Sci 18, 1342-1347. https://doi.org/10.5352/JLS.2008.18.10.1342
  25. Koretz RL (2023) Nutritional support in liver disease-an updated systematic review. Curr Opin Gastroenterol 39, 115-124. https://doi.org/10.1097/MOG.0000000000000914
  26. Kunz RI, Brancalhao RMC (2016) L. d. FC Ribeiro and MRM Natali. BioMed Res Int 2016, 8175701.
  27. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
  28. Lang A, Schoonhoven R, Tuvia S, Brenner DA, Rippe RA (2000) Nuclear factor kappaB in proliferation, activation, and apoptosis in rat hepatic stellate cells. J Hepatol 33, 49-58. https://doi.org/10.1016/S0168-8278(00)80159-2
  29. Lee DY, Cho JM, Yun SM, Hong KS, Ji SD, Son JG, et al. (2017a) Comparative effect of silkworm powder from 3 Bombyx mori varieties on ethanol-induced gastric injury in rat model. Int J Indust Entomol 35, 14-21.
  30. Lee DY, Cho JM, Yun SM, Hong KS, Ji SD, Son JG, et al. (2017b) Comparison of silkworm powder from 3 Bombyx mori varieties on alcohol metabolism in rats. Int J Indust Entomol 35, 22-29.
  31. Lee DY, Hong KS, Song MY, Yun SM, Ji SD, Son JG, et al. (2020a) Hepatoprotective effects of steamed and freeze-dried mature silkworm larval powder against ethanol-induced fatty liver disease in rats. Foods 9, 285.
  32. Lee DY, Song MY, Han YM, Kim EH (2023a) Hongjam prevents hepatic damage against ethanol-induced fatty liver disease in rats. J Asia-Pac Entomol 26, 102046.
  33. Lee DY, Song MY, Hong KS, Yun SM, Han YM, Kim EH (2023b) Low dose administration of mature silkworm powder induces gastric mucosal defense factors in ethanol-induced gastric injury rat model. Food Sci Biotechnol, https://doi.org/10.1007/s10068-10023-01278-10061.
  34. Lee DY, Yun SM, Song MY, Ji SD, Son JG, Kim EH (2020b) Administration of steamed and freeze-dried mature silkworm larval powder prevents hepatic fibrosis and hepatocellular carcinogenesis by blocking TGF-β/STAT3 signaling cascades in rats. Cells 9, 568.
  35. Lieber CS, Leo MA, Wang X, DeCarli LM (2008) Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1α in rats. Biochem Biophys Res Comm 370, 44-48. https://doi.org/10.1016/j.bbrc.2008.03.005
  36. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117, 1175-1183. https://doi.org/10.1172/JCI31537
  37. Long X, Song J, Zhao X, Zhang Y, Wang H, Liu X, et al. (2020) Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress mediated NF-κB signaling. Food Sci Nutr 8, 237-245. https://doi.org/10.1002/fsn3.1296
  38. Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116, 1776-1783. https://doi.org/10.1172/JCI29044
  39. Louvet A, Mathurin P (2015) Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 12, 231-242. https://doi.org/10.1038/nrgastro.2015.35
  40. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977-990. https://doi.org/10.1016/j.cell.2005.04.014
  41. Meng X, Nikolic-Paterson DJ (2016) Lan HYTGF-B. The Master Regulator Of Fibrosis. Nat Rev Nephrol 12, 325-338. https://doi.org/10.1038/nrneph.2016.48
  42. Moon AM, Singal AG, Tapper EB (2020) Contemporary epidemiology of chronic liver disease and cirrhosis. Clin Gastroenterol Hepatol 18, 2650-2666. https://doi.org/10.1016/j.cgh.2019.07.060
  43. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8, 958-969. https://doi.org/10.1038/nri2448
  44. O'Shea RS, Dasarathy S, McCullough AJ (2010) Alcoholic liver disease. Hepatology 51, 307-328. https://doi.org/10.1002/hep.23258
  45. Park M, Kang C, Lee HJ (2021) Effect of bombyx mori on the liver protection of non-alcoholic fatty liver disease based on in vitro and in vivo models. Curr Issues Mol Biol 43, 21-35. https://doi.org/10.3390/cimb43010003
  46. Potter JJ, Rennie-Tankesley L, Mezey E (2003) Influence of leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol 38, 281-288. https://doi.org/10.1016/S0168-8278(02)00414-2
  47. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9, 327-338. https://doi.org/10.1016/j.cmet.2009.02.006
  48. Rahul K, Kweon HY, Kim HB, Lee JH (2022) In vitro screening of anti-skin aging and antioxidant properties of aqueous/solvent extracts from distinctive stages of silkworm (Bombyx mori L.) pupae. Int J Indust Entomol 45, 1-11.
  49. Rasineni K, Casey CA (2012) Molecular mechanism of alcoholic fatty liver. Indian J Pharmacol 44, 299.
  50. Reddy JK, Sambasiva Rao M (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Phys Gastrointest Liver Physiol 290, G852-G858. https://doi.org/10.1152/ajpgi.00521.2005
  51. Rhyu J, Yu R (2021) Newly discovered endocrine functions of the liver. World J Hepatol 13, 1611.
  52. Rogers CQ, Ajmo JM, You M (2008) Adiponectin and alcoholic fatty liver disease. IUBMB life 60, 790-797. https://doi.org/10.1002/iub.124
  53. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4, 177.
  54. Sahoo A, Sahu S, Dandapat J, Samanta L (2016) Pro-oxidative challenges and antioxidant protection during larval development of non-mulberry silkworm, Antheraea mylitta (Lepidoptera: Saturniidae). Italian J Zool 83, 3-14. https://doi.org/10.1080/11250003.2015.1103319
  55. Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA (2019) The cell biology of the hepatocyte: A membrane trafficking machine. J Cell Biol 218, 2096-2112. https://doi.org/10.1083/jcb.201903090
  56. Shek FW, Benyon RC (2004) How can transforming growth factor beta be targeted usefully to combat liver fibrosis? Eur J Gastroenterol Hepatol 16, 123-126. https://doi.org/10.1097/00042737-200402000-00001
  57. Suzuki S, Sakiragaoglu O, Chirila TV (2022) Study of the Antioxidative Effects of Bombyx mori Silk Sericin in Cultures of Murine Retinal Photoreceptor Cells. Molecules 27, 4635.
  58. Svinka J, Mikulits W, Eferl R (2014) STAT3 in hepatocellular carcinoma: new perspectives. Hepat Oncol 1, 107-120. https://doi.org/10.2217/hep.13.7
  59. Tabunoki H, Ono H, Ode H, Ishikawa K, Kawana N, Banno Y, et al. (2013) Identification of key uric acid synthesis pathway in a unique mutant silkworm Bombyx mori model of Parkinson's disease. PLoS One 8, e69130.
  60. Tian Y, Ma J, Wang W, Zhang L, Xu J, Wang K, et al. (2016) Resveratrol supplement inhibited the NF-kappaB inflammation pathway through activating AMPKalpha-SIRT1 pathway in mice with fatty liver. Mol Cell Biochem 422, 75-84. https://doi.org/10.1007/s11010-016-2807-x
  61. Tsukada S, J PC, A RR (2006) Mechanisms of liver fibrosis. Clin Chim Acta 364, 33-60. https://doi.org/10.1016/j.cca.2005.06.014
  62. Waidmann O, Koberle V, Bettinger D, Trojan J, Zeuzem S, Schultheiss M, et al. (2013) Diagnostic and prognostic significance of cell death and macrophage activation markers in patients with hepatocellular carcinoma. J Hepatol 59, 769-779. https://doi.org/10.1016/j.jhep.2013.06.008
  63. Witters LA, Kemp BE (1992) Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5'-AMP-activated protein kinase. J Biol Chem 267, 2864-2867. https://doi.org/10.1016/S0021-9258(19)50663-9
  64. Xiong S, Wang R, Chen Q, Luo J, Wang J, Zhao Z, et al. (2018) Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res 8, 302-316.
  65. Xu J, Lin H, Wu G, Zhu M, Li M (2021) IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma. Front Oncol 11, 760971.
  66. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, et al. (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24, 5552-5560. https://doi.org/10.1038/sj.onc.1208719
  67. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7, 41-51. https://doi.org/10.1038/nri1995
  68. Yun SM, Cho JM, Hong KS, Lee DY, Ji SD, Son JG, et al. (2017) Gastroprotective effect of mature silkworm, Bombyx mori against ethanol-induced gastric mucosal injuries in rats. J Funct Foods 39, 279-286. https://doi.org/10.1016/j.jff.2017.10.036
  69. Yun SM, Han YM, Song MY, Lee DY, Kim HS, Kim SH, et al. (2022) Xanthohumol Interferes with the Activation of TGF-β Signaling in the Process Leading to Intestinal Fibrosis. Nutrients 15, 99.
  70. Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, et al. (2016) TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7, 52294.
  71. Zhang P, Wang W, Mao M, Gao R, Shi W, Li D, et al. (2021a) Similarities and differences: A comparative review of the molecular mechanisms and effectors of NAFLD and AFLD. Front Physiol 12, 710285.
  72. Zhang Y, Wang J, Zhu Z, Li X, Sun S, Wang W, et al. (2021b) Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates. Eur Food Res Technol 247, 343-352. https://doi.org/10.1007/s00217-020-03626-5
  73. Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol Adv 20, 91-100. https://doi.org/10.1016/S0734-9750(02)00003-4