DOI QR코드

DOI QR Code

Effects of sucralose on memory and cognitive function relief in a scopolamine-induced amnesia model

Scopolamine으로 인한 건망증 모델에서 sucralose의 기억력 및 인지기능 완화 효과

  • Eun-mi Jung (Department of Pharmaceutical Engineering, Daegu haany University) ;
  • Eunhong Lee (Department of Pharmaceutical Engineering, Daegu haany University) ;
  • Hyun-Ji Kwon (Advanced Translational Medicine, Konkuk University) ;
  • Jihye Lee (Daegu Haany University Industry Academic Cooperation Foundation) ;
  • Hye-jeong Kim (Department of Pharmaceutical Engineering, Daegu haany University) ;
  • Jinhan Park (Department of K-Beauty Business, College of Cosmetics and Pharm, Daegu Haany University) ;
  • Jongwon Lee (Department of Biochemistry, School of Medicine, Daegu Catholic University) ;
  • Ji Wook Jung (Department of Pharmaceutical Engineering, Daegu haany University)
  • 정은미 (대구한의대학교 일반대학원 제약공학과) ;
  • 이은홍 (대구한의대학교 일반대학원 제약공학과) ;
  • 권현지 (건국대학교 일반대학교원 첨단중개의학과) ;
  • 이지혜 (대구한의대학교 산학협력단) ;
  • 김혜정 (대구한의대학교 일반대학원 제약공학과) ;
  • 박진한 (대구한의대학교 화장품제약대학 K-뷰티학부) ;
  • 이종원 (대구가톨릭대학교 의과대학 생화학교실) ;
  • 정지욱 (대구한의대학교 일반대학원 제약공학과)
  • Received : 2023.12.27
  • Accepted : 2023.12.29
  • Published : 2023.12.30

Abstract

Sucralose is used as a sucrose alternative in the food sector and is a globally approved pyrogenic, high-intensity artificial sweetener. However, due to the lack of studies on the effects of sweeteners on the brain, this study confirmed whether short-term consumption of sucralose has cognitive and memory protective effects in scopolamine-induced memory-injured animal models. After oral administration of sucralose 2, 5, and 10 mg/kg, scopolamine (1 mg/kg) was administered to the control group and the drug group 30 minutes later, and saline was administered intraperitoneally to the normal group, followed by behavioral experiments As a result of the experiment, Y-Maze, passive avoidance, and Morris WaterMaze recovered more than 10% of cognitive function compared to the control group. In addition, as a result of measuring proinflammatory cytokines, sucralose was found to inhibit IL-6 and TNF-α by more than 30%, and we observed that the expression level of ERK-CREB with intracellular signaling mechanisms increased in a concentration-dependent manner. Therefore, it suggests that sucralose is associated with functional foods for the prevention of functional food patients.

Sucralose는 식품 분야에서 sucrose 대체물로 사용되며 세계적으로 승인된 무열량 고강도 인공 감미료이다. 하지만 감미료가 뇌에 미치는 영향에 대한 조사는 미비하여 본 연구에서 scopolamine으로 유발된 기억력 손상 동물모델에서 sucralose 단기 섭취가 인지 및 기억 보호 효과를 가지는지 확인하였다. Sucralose 2, 5, 10 mg/kg를 경구투여하였으며 30분 후 대조군, 약물군에 scopolamine (1mg/kg) 복강투여를 진행하였고 정상군에는 식염수로 복강투여 후 행동실험을 수행하였다. 결과적으로 Y-maze, passive avoidance, Morris water maze에서 대조군과 비교해 10% 이상의 인지기능이 회복되는 결과를 도출하였다. 또한, 전염증성 사이토카인을 측정한 결과 sucralose가 IL-6와 TNF-α를 30% 이상 억제하는 것을 보였으며 세포 내 신호 메커니즘으로 ERK-CREB의 발현량을 관찰한 결과 농도 의존적으로 증가하였다. 따라서 sucralose는 건망증 환자의 예방과 치료를 위한 기능성 식품과 관련이 있다고 시사된다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연합력 선도대학 육성사업(LINC 3.0)의 연구 결과이며, 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단 - 이공분야기초연구사업의 지원을 받아 수행된 연구임(No. NRF-022R1F1A1074902).

References

  1. Kim MS, Lee DY, Lee J, Kim HW, Sung SH, Han JS, Jeon WK, "Terminalia chebula extract prevents scopolamine-induced amnesia via cholinergic modulation and anti-oxidative effects in mice.", BMC Complement Altern Med, Vol.18, No.1, pp.136, (2018) 
  2. Solas M, Milagro FI, Ramirez MJ, Martinez JA, "Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions.", Curr Opin Pharmacol, Vol.37, pp.87-92, (2017).  https://doi.org/10.1016/j.coph.2017.10.005
  3. Al-Tawarah NM, Al-Dmour RH, Abu Hajleh MN, Khleifat KM, Alqaraleh M, Al-Saraireh YM, Jaradat AQ, Al-Dujaili EAS, "Rosmarinus officinalis and Mentha piperita Oils Supplementation Enhances Memory in a Rat Model of Scopolamine-Induced Alzheimer's Disease-like Condition.", Nutrients, Vol.15, No.6, pp.1547, (2023). 
  4. Knapskog AB, Engedal K, Selbaek G, Oksengard AR, "Alzheimer's disease - diagnosis and treatment", Tidsskr Nor Laegeforen, Vol.141, No.7, (2021). 
  5. Lim S, Moon M, Oh H, Kim HG, Kim SY, Oh MS, "Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse.", J Nutr Biochem, Vol.25, No.10, pp.1058-65, (2014).  https://doi.org/10.1016/j.jnutbio.2014.05.009
  6. Chen ZY, Zhang Y, "Animal models of Alzheimer's disease: Applications, evaluation, and perspectives.", Zool Res, Vol.43, No.6, pp.1026-1040, (2022).  https://doi.org/10.24272/j.issn.2095-8137.2022.289
  7. Ozben T, Ozben S, "Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease.", Clin Biochem, Vol.72, (2019). 
  8. Kim MS, Kim BY, Kim JI, Lee J, Jeon WK, "Mumefural Improves Recognition Memory and Alters ERK-CREB-BDNF Signaling in a Mouse Model of Chronic Cerebral Hypoperfusion.", Nutrients, Vol.15, No.14, pp.3271, (2023). 
  9. Shi M, Ding J, Li L, Bai H, Li X, Lan L, Fan H, Gao L, "Effects of Ketamine on Learning and Memory in the Hippocampus of Rats through ERK, CREB, and Arc.", Brain Sci, Vol.11, No.1, pp.27, (2020). 
  10. Thakur S, Dhapola R, Sarma P, Medhi B, Reddy DH, "Neuroinflammation in Alzheimer's Disease: Current Progress in Molecular Signaling and Therapeutics.", Inflammation, Vol.46, No.1, pp.1-17, (2023).  https://doi.org/10.1007/s10753-022-01721-1
  11. Lyra E Silva NM, Goncalves RA, Pascoal TA, Lima-Filho RAS, Resende EPF, Vieira ELM, Teixeira AL, de Souza LC, Peny JA, Fortuna JTS, Furigo IC, Hashiguchi D, Miya-Coreixas VS, Clarke JR, Abisambra JF, Longo BM, Donato J Jr, Fraser PE, Rosa-Neto P, Caramelli P, Ferreira ST, De Felice FG, "Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer's disease.", Transl Psychiatry, Vol.11, No.1, pp.251, (2021). 
  12. Li Y, Shen R, Wen G, Ding R, Du A, Zhou J, Dong Z, Ren X, Yao H, Zhao R, Zhang G, Lu Y, Wu X, "Effects of Ketamine on Levels of Inflammatory Cytokines IL-6, IL-1β, and TNF-α in the Hippocampus of Mice Following Acute or Chronic Administration.", Front Pharmacol, Vol.8, pp.139, (2017). 
  13. Hampel H, Caraci F, Cuello AC, Caruso G, Nistico R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR, Akman-Anderson L, Hernandez F, Avila J, Emanuele E, Valenzuela PL, Lucia A, Watling M, Imbimbo BP, Vergallo A, Lista S, "A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease." Front Immunol, Vol.11, pp.456, (2020). 
  14. Renner UD, Oertel R, Kirch W, "Pharmacokinetics and pharmacodynamics in clinical use of scopolamine.", Ther Drug Monit, Vol.27, No.5, pp.655-65, (2005)  https://doi.org/10.1097/01.ftd.0000168293.48226.57
  15. Chen WN, Yeong KY, "Scopolamine, a Toxin-Induced Experimental Model, Used for Research in Alzheimer's Disease.", CNS Neurol Disord Drug Targets, Vol.19, No.2, pp.85-93, (2020).  https://doi.org/10.2174/1871527319666200214104331
  16. Stone WS, Croul CE, Gold PE. "Attenuation of scopolamine-induced amnesia in mice.", Psychopharmacology, Vol.96, No.3, pp.417-20, (1988).  https://doi.org/10.1007/BF00216073
  17. Ruiz-Ojeda FJ, Plaza-Diaz J, Saez-Lara MJ, Gil A, "Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials.", Adv Nutr, Vol.11, No.2, pp.468, (2020). 
  18. Debras C, Chazelas E, Srour B, Druesne-Pecollo N, Esseddik Y, Szabo de Edelenyi F, Agaesse C, De Sa A, Lutchia R, Gigandet S, Huybrechts I, Julia C, Kesse-Guyot E, Alles B, Andreeva VA, Galan P, Hercberg S, Deschasaux-Tanguy M, Touvier M, "Artificial sweeteners and cancer risk: Results from the NutriNet-Sante population-based cohort study.", PLoS Med, Vol.19, No.3, pp.e1003950, (2022). 
  19. Qurrat-ul-Ain, Khan SA, "Artificial sweeteners: safe or unsafe?", J Pak Med Assoc, Vol.65, No.2, pp.225-7, (2015). 
  20. Erbas O, Erdogan MA, Khalilnezhad A, Solmaz V, Gurkan FT, Yigitturk G, Eroglu HA, Taskiran D, "Evaluation of long-term effects of artificial sweeteners on rat brain: a biochemical, behavioral, and histological study.", J Biochem Mol Toxicol, Vol.32, No.6, pp.e22053, (2018). 
  21. Morales-Rios EI, Garcia-Machorro J, Briones-Aranda A, Gomez-Pliego R, Espinosa-Raya J, "Effect of Long-Term Intake of Nutritive and Non-Nutritive Sweeteners on Metabolic Health and Cognition in Adult Male Rats.", J Med Food, Vol.25, No.11, pp.1059-1065, (2022).  https://doi.org/10.1089/jmf.2022.0016
  22. Magnuson BA, Roberts A, Nestmann ER,"Critical review of the current literature on the safety of sucralose.", Food Chem Toxicol, Vol.106, No.Pt A, pp.324-355, (2017).  https://doi.org/10.1016/j.fct.2017.05.047
  23. AlDeeb OA, Mahgoub H, Foda NH, "Sucralose", Profiles Drug Subst Excip Relat Methodol, Vol.38, pp.423-462, (2013).  https://doi.org/10.1016/B978-0-12-407691-4.00010-1
  24. Pino-Seguel P, Moya O, Borquez JC, Pino-de la Fuente F, Diaz-Castro F, Donoso-Barraza C, Llanos M, Troncoso R, Bravo-Sagua R, "Sucralose consumption ameliorates high-fat diet-induced glucose intolerance and liver weight gain in mice.", Front Nutr, Vol.9, pp.979624, (2022). 
  25. Van Opstal AM, Hafkemeijer A, van den Berg-Huysmans AA, Hoeksma M, Mulder TPJ, Pijl H, Rombouts SARB, van der Grond J, "Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners.", Nutr Neurosci, Vol.24, No.5, pp.395-405, (2021).  https://doi.org/10.1080/1028415X.2019.1639306
  26. Meyer-Gerspach AC, Wingrove JO, Beglinger C, Rehfeld JF, Le Roux CW, Peterli R, Dupont P, O'Daly O, Van Oudenhove L, Wolnerhanssen BK, "Erythritol and xylitol differentially impact brain networks involved in appetite regulation in healthy volunteers.", Nutr Neurosci, Vol.25, No.11, pp.2344-2358, (2022).  https://doi.org/10.1080/1028415X.2021.1965787
  27. Wu B, Eldeghaidy S, Ayed C, Fisk ID, Hewson L, Liu Y, "Mechanisms of umami taste perception: From molecular level to brain imaging.", Crit Rev Food Sci Nutr, Vol.62, No.25, pp.7015-7024, (2022).  https://doi.org/10.1080/10408398.2021.1909532
  28. Talevi A, Enrique AV, Bruno-Blanch LE, "Anticonvulsant activity of artificial sweeteners: a structural link between sweet-taste receptor T1R3 and brain glutamate receptors.", Bioorg Med Chem Lett, Vol.22, No.12, pp.4072-4, (2012).  https://doi.org/10.1016/j.bmcl.2012.04.076
  29. Kraeuter AK, Guest PC, Sarnyai Z, "The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice.", Methods Mol Biol, Vol.1916, pp.105-111, (2019).  https://doi.org/10.1007/978-1-4939-8994-2_10
  30. Ambrogi Lorenzini C, Bucherelli C, Giachetti A, "Passive and active avoidance behavior in the light-dark box test", Physiol Behav, Vol.32, No.4, pp.687-9, (1984).  https://doi.org/10.1016/0031-9384(84)90327-5
  31. Bromley-Brits K, Deng Y, Song W, "Morris water maze test for learning and memory deficits in Alzheimer's disease model mice.", J Vis Exp, Vol.20, No.53, pp.2920, (2011). 
  32. Konstantinou GN, "Enzyme-Linked Immunosorbent Assay (ELISA).", Methods Mol Biol, Vol.1592, pp.79-94, (2017).  https://doi.org/10.1007/978-1-4939-6925-8_7
  33. Ibi D, Suzuki F, Hiramatsu M, "Effect of AceK (acesulfame potassium) on brain function under dietary restriction in mice.", Physiol Behav, Vol.188, pp.291-297, (2018).  https://doi.org/10.1016/j.physbeh.2018.02.024
  34. Grice HC, Goldsmith LA, "Sucralose--an overview of the toxicity data.", Food Chem Toxicol, Vol.38, (2000) 
  35. Kohno D, "Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus.", J Physiol Sci, Vol.67, No.4, pp.459-465, (2017).  https://doi.org/10.1007/s12576-017-0535-y
  36. Lee AA, Owyang C. Sugars, "Sweet Taste Receptors, and Brain Responses", Nutrients, Vol.9, No.7, pp.653, (2017) 
  37. Kim J, Seo YH, Kim J, Goo N, Jeong Y, Bae HJ, Jung SY, Lee J, Ryu JH, "Casticin ameliorates scopolamine-induced cognitive dysfunction in mice.", J Ethnopharmacol, Vol.259, pp.112843, (2020). 
  38. Parsa H, Moradi-Khaligh Z, Rajabi S, Ranjbar K, Komaki A, "Swimming training and Plantago psyllium ameliorate cognitive impairment and glucose tolerance in streptozotocin-nicotinamide-induced type 2 diabetic rats.", J Physiol Sci, Vol.71, No.1, pp.37, (2021). 
  39. Abu-Taweel GM, A ZM, Ajarem JS, Ahmad M, "Cognitive and biochemical effects of monosodium glutamate and aspartame, administered individually and in combination in male albino mice.", Neurotoxicol Teratol, Vol.42, pp.60-7, (2014).  https://doi.org/10.1016/j.ntt.2014.02.001
  40. Olayinka J, Eduviere A, Adeoluwa O, Fafure A, Adebanjo A, Ozolua R, "Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration.", Life Sci, Vol.292, pp.120326, (2022). 
  41. Amoah V, Atawuchugi P, Jibira Y, Tandoh A, Ossei PPS, Sam G, Ainooson G, "Lantana camara leaf extract ameliorates memory deficit and the neuroinflammation associated with scopolamine-induced Alzheimer's-like cognitive impairment in zebrafish and mice.", Pharm Biol, Vol.61, No.1, pp.825-838, (2023).  https://doi.org/10.1080/13880209.2023.2209130
  42. Tanaka T, Narazaki M, Kishimoto T, "IL-6 in inflammation, immunity, and disease.", Cold Spring Harb Perspect Biol, Vol.6, No.10, pp.a016295, (2014). 
  43. Idriss HT, Naismith JH, "TNF alpha and the TNF receptor superfamily: structure-function relationship(s).", Microsc Res Tech, Vol.50, No.3, pp.184-95, (2000).  https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H
  44. Afzal M, Alzarea SI, Alharbi KS, Alzarea AI, Alenezi SK, Alshammari MS, Alquraini AH, Kazmi I, "Rosiridin Attenuates Scopolamine-Induced Cognitive Impairments in Rats via Inhibition of Oxidative and Nitrative Stress Leaded Caspase-3/9 and TNF-α Signaling Pathways.", Molecules, Vol.27, No,18, pp.5888, (2022). 
  45. Lu C, Wang Y, Xu T, Li Q, Wang D, Zhang L, Fan B, Wang F, Liu X, "Genistein Ameliorates Scopolamine-Induced Amnesia in Mice Through the Regulation of the Cholinergic Neurotransmission, Antioxidant System and the ERK/CREB/BDNF Signaling.", Front Pharmacol, Vol.9, pp.1153, (2018). 
  46. Madhu LN, Kodali M, Attaluri S, Shuai B, Melissari L, Rao X, Shetty AK, "Melatonin improves brain function in a model of chronic Gulf War Illness with modulation of oxidative stress, NLRP3 inflammasomes, and BDNF-ERK-CREB pathway in the hippocampus.", Redox Biol, Vol.43, pp.101973, (2021). 
  47. Zhao X, Li S, Gaur U, Zheng W, "Artemisinin Improved Neuronal Functions in Alzheimer's Disease Animal Model 3xtg Mice and Neuronal Cells via Stimulating the ERK/CREB Signaling Pathway.", Aging Dis, Vol.11, No.4, pp.801-819, (2020).  https://doi.org/10.14336/AD.2019.0813
  48. Su X, Wang C, Wang X, Han F, Lv C, Zhang X, "Sweet Dream Liquid Chinese Medicine Ameliorates Learning and Memory Deficit in a Rat Model of Paradoxical Sleep Deprivation through the ERK/CREB Signaling Pathway.", J Med Food, Vol.19, No.5, pp.472-80, (2016).  https://doi.org/10.1089/jmf.2015.3530
  49. Liu L, Zhu J, Zhou L, Wan L, "RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus.", Sci Rep, Vol.6, pp.20183, (2016).