DOI QR코드

DOI QR Code

Anti-inflammatory effects of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Leaf Fractions

편백(Chamaecyparis obtusa (Siebold & Zucc.) Endl.) 잎 분획물의 항염증 효과

  • Yong-Jin Kwon (Department of Cosmetic Science, Kyungsung University)
  • 권용진 (경성대학교 화장품학과)
  • Received : 2023.10.08
  • Accepted : 2023.12.20
  • Published : 2023.12.30

Abstract

In this study, to evaluate the possibility of utilizing Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) leaf fractions as anti-inflammatory functional materials, C. obtusa extract extracted with 99% ethanol (CO99EL) was fractionated with hexane (CO99EL-H), chloroform (CO99EL-C), ethyl acetate (CO99EL-E), butanol (CO99EL-B) and distilled water (CO99EL-W). The anti-inflammatory effects of each fraction was performed using lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages. Cytotoxicity was highest in CO99EL-H and CO99EL-C and lowest in CO99EL-W. Interestingly, LPS-induced iNOS expression and NO production were significantly reduced by CO99EL-H and CO99EL-E, and COX-2 expression was significantly reduced by CO99EL-B and CO99EL-W. In addition, interleukin (IL)-1𝛽, an inflammatory cytokine increased by LPS, was significantly reduced by CO99EL-C, CO99EL-E, CO99EL-B and CO99EL-W, and IL-6 was significantly reduced by CO99EL-B and CO99EL-W. Therefore, the janus kinase (JAK)/signaling transducer and activator of transcription (STAT) signaling pathway activated by LPS was significantly reduced by CO99EL-H and CO99EL-C, and the mitogen-activated protein kinase (MAPK) signaling pathway was slightly reduced by CO99EL-H and CO99EL-C. However, nuclear factor (NF)-𝜅B activity was not reduced by any fractions. Based on the results of this study, it was confirmed that CO99EL fractions have different anti-inflammatory mechanisms depending on the solvent used for fractionation.

본 연구는 편백나무 잎 분획물의 항염증 기능성 소재로서의 활용 가능성을 평가하기 위해 99% 에탄올로 추출한 편백잎 추출물 (CO99EL)을 헥산 (CO99EL-H), 클로로포름 (CO99EL-C), 에틸아세테이트 (CO99EL-E), 부탄올 (CO99EL-B)과 증류수 (CO99EL-W) 순서대로 분획하였다. 각각의 분획물의 항염증 효과는 LPS로 유도된 RAW264.7 마우스 대식세포를 이용하여 수행하였다. 세포독성은 CO99EL-H와 CO99EL-C에서 가장 높았으며 CO99EL-W에서 가장 낮음을 확인하였다. 흥미롭게도, LPS로 유도된 iNOS의 발현과 NO의 생산은 CO99EL-H와 CO99EL-E에 의해 현저하게 감소하였고, COX-2의 발현은 CO99EL-B와 CO99EL-W에 의해 현저하게 감소하였다. 또한, LPS에 의해 증가된 염증성 사이토카인인 interleukin(IL)-1𝛽는 CO99EL-C, CO99EL-E, CO99EL-B와 CO99EL-W에 의해 현저하게 감소하였고, IL-6는 CO99EL-B와 CO99EL-W에 의해 현저하게 감소하였다. 그뿐만 아니라, LPS에 의해 활성화된 janus kinase (JAK)/signaling transducer and activator of transcription (STAT) 신호 전달 경로는 CO99EL-H와 CO99EL-C에 의해 상당히 감소하였고, mitogen-activated protein kinase (MAPK)은 CO99EL-C에 의해 약간 감소하였다. 하지만, nuclear factor (NF)-𝜅B의 활성은 어떤 분획물도 감소시키지 못했다. 본 연구의 결과를 통해, CO99EL의 분획물들은 분획에 사용되는 용매에 따라 항염증 작용기전이 다름을 확인하였다.

Keywords

References

  1. L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, L. Zhao, "Inflammatory responses and inflammation-associated diseases in organs", Oncotarget, Vol.9, No.6, pp.7204, (2018).
  2. B. Choi, C. Lee, J. W. Yu, "Distinctive role of inflammation in tissue repair and regeneration", Archives of Pharmacal Research, Vol.46, No.2, pp.7204, (2023).
  3. J. M. Zhang, J. An, "Cytokines, inflammation and pain", International anesthesiology clinics, Vol.45, No.2, pp.27, (2007).
  4. M. Lenska-Mieciek, N. Madetko-Alster, P. Alster, L. Krolicki, U. Fiszer, D. Koziorowski, "Inflammation in multiple system atrophy", Frontiers in Immunology, Vol.14, (2023).
  5. A. Gillissen, M. Paparoupa, "Inflammation and infections in asthma", The clinical respiratory journal, Vol.9, No.3, pp.257, (2015).
  6. L. Duan, X. Rao, K. R. Sigdel, "Regulation of inflammation in autoimmune disease", Journal of immunology research, Vol.2019, (2019).
  7. S. Gordon, "Phagocytosis: an immunobiologic process", Immunity, Vol.44, No.3, pp.463-475, (2016). https://doi.org/10.1016/j.immuni.2016.02.026
  8. A. Ciesielska, M. Matyjek, K. Kwiatkowska, "TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling", Cellular and molecular life sciences, Vol.78, pp.1233-1261, (2021). https://doi.org/10.1007/s00018-020-03656-y
  9. K. Takeda, S. Akira, "Toll-like receptors in innate immunity". International immunology, Vol.17, No.1, pp.1-14, (2005). https://doi.org/10.1093/intimm/dxh186
  10. J. Zou, N. Shankar, "Roles of TLR/MyD88/MAPK/NF-κB signaling pathways in the regulation of phagocytosis and proinflammatory cytokine expression in response to E. faecalis infection", PloS one, Vol.10, No.8, pp.e0136947, (2015). https://doi.org/10.1371/journal.pone.0136947
  11. M. Orecchioni, Y. Ghosheh, A. B. Pramod, K. Ley, "Macrophage polarization: different gene signatures in M1 (LPS+) vs. classically and M2 (LPS-) vs. alternatively activated macrophages", Frontiers in immunology, Vol.10, pp.1084, (2019).
  12. X. Liu, S. Yin, Y. Chen, Y. Wu, W. Zheng, H. Dong, Y. Bai, Y. Qin, J. Li, S. Feng, P. Zhao, "LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB, STAT3 or AP-1 activation", Molecular medicine reports, Vol.17, No.4, pp.5484-5491, (2018). https://doi.org/10.3892/mmr.2018.8542
  13. J. B. Kim, A. R. Han, E. Y. Park, J. Y. Kim, W. Cho, J. Lee, E. K. Seo, K. T. Lee, "Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-κB inactivation in RAW 264.7 macrophage cells", Biological and Pharmaceutical Bulletin, Vol.30, No.12, pp.2345-2351, (2007). https://doi.org/10.1248/bpb.30.2345
  14. Y. Fang, L. Yang, J. He, "Plantanone C attenuates LPS-stimulated inflammation by inhibiting NF-κB/iNOS/COX-2/MAPKs/Akt pathways in RAW 264.7 macrophages", Biomedicine & Pharmacotherapy, Vol.143, pp.112104, (2021).
  15. Y. A. Jang, S. G. Kim, H. K. Kim, J. T Lee, "Biological Activity and Component Analyses of Chamaecyparis obtusa Leaf Extract: Evaluation of Antiwrinkle and Cell Protection Effects in UVA-Irradiated Cells". Medicina, Vol.59 No.4, pp.755, (2023).
  16. Y. Park, S. M. Jung, S. A. Yoo, W. U. Kim, C. S. Cho, B. J. Park, J. M. Woo, C. H. Yoon, "Antinociceptive and anti-inflammatory effects of essential oil extracted from Chamaecyparis obtusa in mice". International Immunopharmacology, Vol.29, No.2, pp.320-325, (2015). https://doi.org/10.1016/j.intimp.2015.10.034
  17. Y. J. Kwon, E. B. Seo, S. K. Kim, H. S. Lee, H. Lee, Y. A. Jang, Y. M. Kim, Y. N. Kim, J. T. Lee, S. K. Ye, "Pharmacological anti-tumor effects of natural Chamaecyparis obtusa (siebold & zucc.) endl. Leaf extracts on breast cancer" Journal of Ethnopharmacology, Vol.313, pp.116598, (2023).
  18. B. K. Kim, J. H. Kang, G. H. Oh, J. Y. Hwang, S. O. Jang, M. Kim, "Antibacterial and Antioxidant Activity of Chamaecyparis obtusa Extracts", Journal of Life Science, Vol.29, No.7, pp.785-791, (2019). https://doi.org/10.5352/JLS.2019.29.7.785
  19. Y. J. Kwon, E. B. Seo, S. K. Kim, K. H. Noh, H. Lee, Y. W. Joung, H. M. Shin, Y. A. Jang, Y. M. Kim, J. T. Lee, S. K. Ye, "Chamaecyparis obtusa (Siebold & Zucc.) Endl. leaf extracts prevent inflammatory responses via inhibition of the JAK/STAT axis in RAW264. 7 cells", Journal of Ethnopharmacology, Vol.282, pp.114493, (2022).
  20. M. Y. Park, S. E. Ha, H. H. Kim, P. B. Bhosale, A. Abusaliya, S. H. Jeong, J. S. Park, J. D. Heo, G. S. Kim, "Scutellarein inhibits LPS-induced inflammation through NF-κB/MAPKs signaling pathway in RAW264. 7 cells", Molecules, Vol.27 No.12, pp.3782, (2022).