References
- Choi, S.; Park, D.; Hwang, G.; Ryu, C., Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium ion Capacitor. Transactions of the Korean hydrogen and new energy society 2015, 26 (5), 416-422. https://doi.org/10.7316/KHNES.2015.26.5.416
- Gabrielli, G.; Marinaro, M.; Mancini, M.; Axmann, P.; Wohlfahrt-Mehrens, M., A new approach for compensating the irreversible capacity loss of high-energy Si/C/LiNi0.5Mn1.5O4 lithium-ion batteries. Journal of Power Sources 2017, 351, 35-44. https://doi.org/10.1016/j.jpowsour.2017.03.051
- Deng, P.; Yang, J.; Li, S.; Fan, T. E.; Wu, H. H.; Mou, Y.; Huang, H.; Zhang, Q.; Peng, D. L.; Qu, B., High Initial Reversible Capacity and Long Life of Ternary SnO2-Co-carbon Nanocomposite Anodes for Lithium-Ion Batteries. Nanomicro Lett 2019, 11 (1), 18.
- Park, H.-K.; Kong, B.-S.; Oh, E.-S., Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochemistry Communications 2011, 13 (10), 1051-1053. https://doi.org/10.1016/j.elecom.2011.06.034
- Zhang, S., Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. npj Computational Materials 2017, 3 (1).
- Sun, B.; Huang, X.; Chen, S.; Munroe, P.; Wang, G., Porous graphene nano-architectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano letters 2014, 14 (6), 3145-3152. https://doi.org/10.1021/nl500397y
- Ling, M.; Xu, Y.; Zhao, H.; Gu, X.; Qiu, J.; Li, S.; Wu, M.; Song, X.; Yan, C.; Liu, G.; Zhang, S., Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 2015, 12, 178-185. https://doi.org/10.1016/j.nanoen.2014.12.011
- Im, Ji Sun and Seo, Sang Wan and Ahn, Won Jun and Lee, Young-Seak and Kang, Seok Chang and Im, Ji Sun, Application of Pitch-Based Binder for Supercapacitor as a New Alternative of Traditional Polymer Binder, SSRN, 2022, 1-24.
- Sarkar, A.; Kocaefe, D.; Kocaefe, Y.; Sarkar, D.; Bhattacharyay, D.; Morais, B.; Chabot, J., Coke-pitch interactions during anode preparation. Fuel 2014, 117, 598-607. https://doi.org/10.1016/j.fuel.2013.09.015
- Shujing Lia, Hongtao Guoa, Shuijian He, Haoqi Yang, Kunming Liu, Gaigai Duan, Shaohua Jiang, Advanced electrospun nanofibers as bifunctional electrocatalysts for flexible metal-air (O2) batteries: Opportunities and challenges, Materials & Design, 2022, 214, 110406.
- Nguyen, V. A.; Kuss, C., Review-Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond. Journal of The Electrochemical Society 2020, 167 (6).
- Lee, N.; Seo, S. W.; Kwak, C. H.; Kim, M. I.; Im, J. S., Effects of Oxidation Process on Thermal Properties of Petroleum-based Isotropic Pitch. Applied Chemistry for Engineering 2020, 31 (1), 36-42.
- Mochida, I.; Korai, Y.; Ku, C.-H.; Watanabe, F.; Sakai, Y., Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon 2000, 38 (2), 305-328. https://doi.org/10.1016/S0008-6223(99)00176-1
- Kim, J. G.; Kim, J. H.; Song, B.-J.; Jeon, Y. P.; Lee, C. W.; Lee, Y.-S.; Im, J. S., Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF. Fuel 2016, 167, 25-30. https://doi.org/10.1016/j.fuel.2015.11.050
- Jong Hoon Cho, Ji Hong Kim, Young-Seak Lee, Ji Sun Im, and Seok Chang Kang, Preparation and Characterization of Pitch based Coke with Anisotropic Microstructure Derived from Pyrolysis Fuel Oil, Appl. Chem. Eng, 2021, 32(6), 640-646.
- Kim, J. H.; Choi, Y. J.; Im, J. S.; Jo, A.; Lee, K. B.; Bai, B. C., Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch. Journal of Industrial and Engineering Chemistry 2020, 88, 251-259. https://doi.org/10.1016/j.jiec.2020.04.022
- Karkar, Z.; Guyomard, D.; Roue, L.; Lestriez, B., A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochimica Acta 2017, 258, 453-466. https://doi.org/10.1016/j.electacta.2017.11.082
- Tanoglu, M.; Robert, S.; Heider, D.; McKnight, S.;Brachos, V.; Gillespie Jr, J., Effects of thermoplastic preforming binder on the properties of S2-glass fabric reinforced epoxy composites. International journal of adhesion and adhesives 2001, 21 (3), 187-195. https://doi.org/10.1016/S0143-7496(00)00050-6
- Zheng, H.; Yang, R.; Liu, G.; Song, X.; Battaglia, V. S., Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. The Journal of Physical Chemistry C 2012, 116 (7), 4875-4882. https://doi.org/10.1021/jp208428w
- Lee, Y.; Choi, J.; Ryou, M.-H.; Lee, Y. M., Polymeric Materials for Lithium-Ion Batteries (Separators and Binders). Polymer Science and Technology 2013, 24 (6), 603-611.
- Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K., Recent development of carbon materials for Li ion batteries. Carbon 2000, 38 (2), 183-197. https://doi.org/10.1016/S0008-6223(99)00141-4
- Ibrahim M.A. Mohamed, Palsamy Kanagaraj, Ahmed S. Yasin, Waheed Iqbal, Changkun Liu, Electrochemical impedance investigation of urea oxidation in alkaline media based on electrospun nanofibers towards the technology of direct-urea fuel cells, Journal of Alloys and Compounds, 2019, 816, 152513-152523. https://doi.org/10.1016/j.jallcom.2019.152513
- Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J., Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. Journal of applied electrochemistry 2006, 36 (10), 1099-1104. https://doi.org/10.1007/s10800-006-9191-2
- Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D., Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Advanced functional materials 2014, 24 (37), 5904-5910. https://doi.org/10.1002/adfm.201401269
- Xu, J.; Chou, S.-L.; Gu, Q.-f.; Liu, H.-K.; Dou, S.-X., The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. Journal of Power Sources 2013, 225, 172-178.
- Li, H.; Chen, Y.-M.; Ma, X.-T.; Shi, J.-L.; Zhu, B.-K.; Zhu, L.-P., Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: Preparation and property of PVDF/poly (dimethylsiloxane) blending membrane. Journal of membrane science 2011, 379 (1-2), 397-402. https://doi.org/10.1016/j.memsci.2011.06.008
- Adusei, P. K.; Johnson, K.; Kanakaraj, S. N.; Zhang, G.; Fang, Y.; Hsieh, Y.-Y.; Khosravifar, M.; Gbordzoe, S.; Nichols, M.; Shanov, V., Asymmetric Fiber Supercapacitors Based on a FeC2O4/FeOOH-CNT Hybrid Material. C 2021, 7 (3), 62.
- Jo, Y. J.; Lee, J. D., Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries. Korean Chemical Engineering Research 2018, 56 (3), 320-326. https://doi.org/10.9713/KCER.2018.56.3.320
- Aziz, M.; Buraidah, M.; Careem, M.; Arof, A., PVA based gel polymer electrolytes with mixed iodide salts (K+ I- and Bu4N+ I-) for dye-Sensitized solar cell application. Electrochimica Acta 2015, 182, 217-223. https://doi.org/10.1016/j.electacta.2015.09.035
- Zhen-Y Gu, Zhong-H Sun, Jin-Z Guo, Xin-X Zhao, Chen-D Zhao, Shao-F Li, Xiao-T Wang, Wen-H Li, Yong-L Heng, and Xing-L Wu., High-Rate and Long-Cycle Cathode for Sodium-Ion Batteries: Enhanced Electrode Stability and Kinetics via Binder Adjustment. ACS Applied Materials & Interfaces, 2020,12 (42), 47580-47589. https://doi.org/10.1021/acsami.0c14294