Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (grant no. 20191510301110 and 20214000000410).
References
- W. Feng, Y. Wang, J. Li, K. Gao, H. An, Decomposition of spent radioactive ionexchange resin using photo-Fenton process, J. Chem. Technol. Biotechnol. 95 (2020) 2522-2529. https://doi.org/10.1002/jctb.6437
- N.H. Hamodi, Y. Iqbal, Immobilization of spent ion exchange resin arising from nuclear power plants: an introduction, J. Pak. Mater. Soc. 3 (2009) 7-18.
- A. Hussain, D. Al-Othmany, Treatment and conditioning of spent ion exchange resin from nuclear power plant, Adv. Theor. Math. Phys. 15 (2013) 79-89.
- International Atomic Energy Agency (IAEA), Management of spent ionexchange resins from nuclear power plants, TECDOC 2380 (1981).
- K. Kim, K. Kim, M. Choi, S.H. Son, J.H. Han, Treatment of ion exchange resins used in nuclear power plants by super-and sub-critical water oxidationeA road to commercial plant from bench-scale facility, Chem. Eng. J. 189 (2012) 213-221. https://doi.org/10.1016/j.cej.2012.02.060
- Y.P. Korchagin, E.K. Aref'ev, E.Y. Korchagin, Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations, Therm. Eng. 57 (2010) 593-597. https://doi.org/10.1134/S0040601510070104
- T.B. Tahir, Radioactive waste management: policy & strategy of Pakistan, in: Conference of World Nuclear Association, London, Sep. 2007.
- L. Wang, L. Yi, G. Wang, L. Li, L. Lu, L. Guo, Experimental investigation on gasification of cationic ion exchange resin used in nuclear power plants by supercritical water, J. Hazard Mater. 126437 (2021).
- A.C. Nilsson, E. Hogfeldt, M. Muhammed, S. Wingefors, On the Swelling of Ion € Exchange Resins Used in Swedish Nuclear Power Plants, (No. SKI-84089), Swedish Nuclear Power Inspectorate, 1988.
- M.S. Palamarchuk, A.M. Egorin, M.V. Tutov, V.A. Avramenko, Decontamination of spent ion-exchange resins contaminated with cesium radionuclides, Dokl. Chem. 465 (2015) 308-312. https://doi.org/10.1134/S0012500815120071
- Z. Wan, L. Xu, J. Wang, Treatment of spent radioactive anionic exchange resins using Fenton-like oxidation process, Chem. Eng. J. 284 (2016) 733-740. https://doi.org/10.1016/j.cej.2015.09.004
- M.A. Hafeez, J. Jeon, S. Hong, N. Hyatt, J. Heo, W. Um, Fenton-like treatment for reduction of simulated carbon-14 spent resin, J. Environ. Chem. Eng. 9 (2021), 104740.
- G.I. Park, I.T. Kim, K.W. Kim, Development of Adsorbent for C-14 Gas Trapping and Characteristics Evaluation, 2006.
- J. Wang, Z. Wan, Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry, Prog. Nucl. Energy 78 (2015) 47-55. https://doi.org/10.1016/j.pnucene.2014.08.003
- J. Li, J. Wang, Advances in cement solidification technology for waste radioactive ion exchange resins: a review, J. Hazard Mater. 135 (2006) 443-448. https://doi.org/10.1016/j.jhazmat.2005.11.053
- I. Plecas, S. Dimovic, Influence of natural sorbents on the immobilization of spent ion exchange resins in cement, J. Radioanal. Nucl. Chem. 269 (2006) 181-185. https://doi.org/10.1007/s10967-006-0248-9
- J. Byun, W.N. Choi, H.R. Kim, Dose evaluation of workers according to operating time and outflow rate in a spent resin treatment facility, Nucl. Eng. Technol. 53 (2021) 3824-3836. https://doi.org/10.1016/j.net.2021.06.007
- F. Vermeersch, C.V. Bosstraeten, Development of the VISIPLAN ALARA Planning Tool, 1998. No. IAEA-TECDOC-1031.