DOI QR코드

DOI QR Code

Thermal-hydraulic 0D/3D coupling in OpenFOAM: Validation and application in nuclear installations

  • Santiago F. Corzo (CIMEC Centro de Investigacion de M etodos Computacionales (UNL, CONICET)) ;
  • Dario M. Godino (CIMEC Centro de Investigacion de M etodos Computacionales (UNL, CONICET)) ;
  • Alirio J. Sarache Pina (CIMEC Centro de Investigacion de M etodos Computacionales (UNL, CONICET)) ;
  • Norberto M. Nigro (CIMEC Centro de Investigacion de M etodos Computacionales (UNL, CONICET)) ;
  • Damian E. Ramajo (CIMEC Centro de Investigacion de M etodos Computacionales (UNL, CONICET))
  • Received : 2022.05.19
  • Accepted : 2023.01.01
  • Published : 2023.05.25

Abstract

The nuclear safety assessment involving large transient simulations is forcing the community to develop methods for coupling thermal-hydraulics and neutronic codes and three-dimensional (3D) Computational Fluid Dynamics (CFD) codes. In this paper a set of dynamic boundary conditions are implemented in OpenFOAM in order to apply zero-dimensional (0D) approaches coupling with 3D thermal-hydraulic simulation in a single framework. This boundary conditions are applied to model pipelines, tanks, pumps, and heat exchangers. On a first stage, four tests are perform in order to assess the implementations. The results are compared with experimental data, full 3D CFD, and system code simulations, finding a general good agreement. The semi-implicit implementation nature of these boundary conditions has shown robustness and accuracy for large time steps. Finally, an application case, consisting of a simplified open pool with a cooling external circuit is solved to remark the capability of the tool to simulate thermal hydraulic systems commonly found in nuclear installations.

Keywords

Acknowledgement

The authors would like to thank Agencia Nacional de Promocion Cientifica y Tecnologica (PICT 2019-03750) as well as Consejo Nacional de Investigaciones Cientificas y Tecnologicas.

References

  1. J.P. Tullis, Hydraulics of Pipelines: Pumps, Valves, Cavitation, Transients, John Wiley & Sons, 1989. 
  2. B.E. Larock, R.W. Jeppson, G.Z. Watters, Hydraulics of Pipeline Systems, CRC press, 1999. 
  3. D. Bestion, System Code Models and Capabilities Section III, IAEA Collections, 2008, pp. 81-106. 
  4. D. Pialla, D. Tenchine, S. Li, P. Gauthe, A. Vasile, R. Baviere, N. Tauveron, F. Perdu, L. Maas, F. Cocheme, et al., Overview of the system alone and system/cfd coupled calculations of the phenix natural circulation test within the thins project, Nuclear Engineering and Design 290 (2015) 78-86.  https://doi.org/10.1016/j.nucengdes.2014.12.006
  5. M. Aufiero, C. Fiorina, A. Laureau, P. Rubiolo, V. Valtavirta, Serpent-openfoam coupling in transient mode: simulation of a godiva prompt critical burst, Proceedings of M&C+ SNA+ MC (2015) 19-23. 
  6. C. Wang, H. Nilsson, J. Yang, O. Petit, 1d-3d coupling for hydraulic system transient simulations, Computer Physics Communications 210 (2017) 1-9.  https://doi.org/10.1016/j.cpc.2016.09.007
  7. R.P. Martin, Relap5/mod3 code coupling model, Nuclear Safety 36 (2) (1995) 290-298. 
  8. D. Aumiller, E. Tomlinson, R. Bauer, A coupled relap5-3d/cfd methodology with a proof-of-principle calculation, Nuclear Engineering and Design 205 (1-2) (2001) 83-90.  https://doi.org/10.1016/S0029-5493(00)00370-8
  9. W. Li, X. Wu, D. Zhang, G. Su, W. Tian, S. Qiu, Preliminary study of coupling cfd code fluent and system code relap5, Annals of Nuclear Energy 73 (2014) 96-107.  https://doi.org/10.1016/j.anucene.2014.06.042
  10. J. Herb, Coupling Openfoam with Thermo-Hydraulic Simulation Code Athlet, 9th OpenFOAM Workshop, Zagreb (Croatia), 2014. 
  11. T.P. Grunloh, A. Manera, A novel domain overlapping strategy for the multiscale coupling of cfd with 1d system codes with applications to transient flows, Annals of Nuclear Energy 90 (2016) 422-432.  https://doi.org/10.1016/j.anucene.2015.12.027
  12. D. Martelli, N. Forgione, G. Barone, I. Di Piazza, Coupled simulations of the nacie facility using relap5 and ansys fluent codes, Annals of Nuclear Energy 101 (2017) 408-418.  https://doi.org/10.1016/j.anucene.2016.11.041
  13. W. Weaver, E. Tomlinson, D. Aumiller, An executive program for use with relap5-3d, in: BT-3394, 2001 RELAP5 Users Seminar, Sun Valley, Idaho, 2001. 
  14. D. Aumiller, E. Tomlinson, W. Weaver, An integrated relap5-3d and multiphase cfd code system utilizing a semi-implicit coupling technique, Nuclear engineering and design 216 (1) (2002) 77-87.  https://doi.org/10.1016/S0029-5493(01)00522-2
  15. D. Aumiller, F. Buschman, E. Tomlinson, D. Gill, Development of an integrated code system using r5exec and relap5-3d, Nuclear Technology 193 (1) (2016) 183-199.  https://doi.org/10.13182/NT15-5
  16. G. Bandini, M. Polidori, A. Gerschenfeld, D. Pialla, S. Li, W. Ma, P. Kudinov, M. Jeltsov, K. Koop, K. Huber, et al., Assessment of systems codes and their coupling with cfd codes in thermal-hydraulic applications to innovative reactors, Nuclear Engineering and Design 281 (2015) 22-38.  https://doi.org/10.1016/j.nucengdes.2014.11.003
  17. C.J. Greenshields, Openfoam User Guide Version 7, the openfoam foundation, 2019. 
  18. C. Fletcher, R. Schultz, Relap5/mod3 Code Manual Volume V: User's Guidelines, vol. 83415, Idaho National Engineering Laboratory, Lockheed Idaho Technologies Company, Idaho Falls, Idaho, 1995. 
  19. W. Ambrosini, N. Forgione, J. Ferreri, M. Bucci, The effect of wall friction in single-phase natural circulation stability at the transition between laminar and turbulent flow, Annals of Nuclear Energy 31 (16) (2004) 1833-1865.  https://doi.org/10.1016/j.anucene.2004.05.011
  20. G. Lerchl, H. Austregesilo, The Athlet Code Documentation Package, vol. 1, Usera AZs Manual, GRS-P, 1995. 
  21. W.M. Kays, A.L. London, Compact Heat Exchangers, 1998. 
  22. C. Hirt, B. Nichols, Volume of fluid (vof) method for the dynamics of free boundaries, Journal of computational physics 39 (2) (1981) 201-225.  https://doi.org/10.1016/0021-9991(81)90145-5
  23. J. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, Journal of computational physics 100 (2) (1992) 335-354.  https://doi.org/10.1016/0021-9991(92)90240-Y
  24. B. Launder, D. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering 3 (2) (1974) 269-289.  https://doi.org/10.1016/0045-7825(74)90029-2
  25. G. Wang, B. Wang, J. Wen, R. Tian, Z. Niu, X. Liu, Experimental study on the hydraulic characteristics of inertia tank after the failure of pump power, Annals of Nuclear Energy 151 (2021), 107885. 
  26. M. Kaviany, Principles of Heat Transfer in Porous Media, Springer Science & Business Media, 2012.