Acknowledgement
The authors would like to thank Agencia Nacional de Promocion Cientifica y Tecnologica (PICT 2019-03750) as well as Consejo Nacional de Investigaciones Cientificas y Tecnologicas.
References
- J.P. Tullis, Hydraulics of Pipelines: Pumps, Valves, Cavitation, Transients, John Wiley & Sons, 1989.
- B.E. Larock, R.W. Jeppson, G.Z. Watters, Hydraulics of Pipeline Systems, CRC press, 1999.
- D. Bestion, System Code Models and Capabilities Section III, IAEA Collections, 2008, pp. 81-106.
- D. Pialla, D. Tenchine, S. Li, P. Gauthe, A. Vasile, R. Baviere, N. Tauveron, F. Perdu, L. Maas, F. Cocheme, et al., Overview of the system alone and system/cfd coupled calculations of the phenix natural circulation test within the thins project, Nuclear Engineering and Design 290 (2015) 78-86. https://doi.org/10.1016/j.nucengdes.2014.12.006
- M. Aufiero, C. Fiorina, A. Laureau, P. Rubiolo, V. Valtavirta, Serpent-openfoam coupling in transient mode: simulation of a godiva prompt critical burst, Proceedings of M&C+ SNA+ MC (2015) 19-23.
- C. Wang, H. Nilsson, J. Yang, O. Petit, 1d-3d coupling for hydraulic system transient simulations, Computer Physics Communications 210 (2017) 1-9. https://doi.org/10.1016/j.cpc.2016.09.007
- R.P. Martin, Relap5/mod3 code coupling model, Nuclear Safety 36 (2) (1995) 290-298.
- D. Aumiller, E. Tomlinson, R. Bauer, A coupled relap5-3d/cfd methodology with a proof-of-principle calculation, Nuclear Engineering and Design 205 (1-2) (2001) 83-90. https://doi.org/10.1016/S0029-5493(00)00370-8
- W. Li, X. Wu, D. Zhang, G. Su, W. Tian, S. Qiu, Preliminary study of coupling cfd code fluent and system code relap5, Annals of Nuclear Energy 73 (2014) 96-107. https://doi.org/10.1016/j.anucene.2014.06.042
- J. Herb, Coupling Openfoam with Thermo-Hydraulic Simulation Code Athlet, 9th OpenFOAM Workshop, Zagreb (Croatia), 2014.
- T.P. Grunloh, A. Manera, A novel domain overlapping strategy for the multiscale coupling of cfd with 1d system codes with applications to transient flows, Annals of Nuclear Energy 90 (2016) 422-432. https://doi.org/10.1016/j.anucene.2015.12.027
- D. Martelli, N. Forgione, G. Barone, I. Di Piazza, Coupled simulations of the nacie facility using relap5 and ansys fluent codes, Annals of Nuclear Energy 101 (2017) 408-418. https://doi.org/10.1016/j.anucene.2016.11.041
- W. Weaver, E. Tomlinson, D. Aumiller, An executive program for use with relap5-3d, in: BT-3394, 2001 RELAP5 Users Seminar, Sun Valley, Idaho, 2001.
- D. Aumiller, E. Tomlinson, W. Weaver, An integrated relap5-3d and multiphase cfd code system utilizing a semi-implicit coupling technique, Nuclear engineering and design 216 (1) (2002) 77-87. https://doi.org/10.1016/S0029-5493(01)00522-2
- D. Aumiller, F. Buschman, E. Tomlinson, D. Gill, Development of an integrated code system using r5exec and relap5-3d, Nuclear Technology 193 (1) (2016) 183-199. https://doi.org/10.13182/NT15-5
- G. Bandini, M. Polidori, A. Gerschenfeld, D. Pialla, S. Li, W. Ma, P. Kudinov, M. Jeltsov, K. Koop, K. Huber, et al., Assessment of systems codes and their coupling with cfd codes in thermal-hydraulic applications to innovative reactors, Nuclear Engineering and Design 281 (2015) 22-38. https://doi.org/10.1016/j.nucengdes.2014.11.003
- C.J. Greenshields, Openfoam User Guide Version 7, the openfoam foundation, 2019.
- C. Fletcher, R. Schultz, Relap5/mod3 Code Manual Volume V: User's Guidelines, vol. 83415, Idaho National Engineering Laboratory, Lockheed Idaho Technologies Company, Idaho Falls, Idaho, 1995.
- W. Ambrosini, N. Forgione, J. Ferreri, M. Bucci, The effect of wall friction in single-phase natural circulation stability at the transition between laminar and turbulent flow, Annals of Nuclear Energy 31 (16) (2004) 1833-1865. https://doi.org/10.1016/j.anucene.2004.05.011
- G. Lerchl, H. Austregesilo, The Athlet Code Documentation Package, vol. 1, Usera AZs Manual, GRS-P, 1995.
- W.M. Kays, A.L. London, Compact Heat Exchangers, 1998.
- C. Hirt, B. Nichols, Volume of fluid (vof) method for the dynamics of free boundaries, Journal of computational physics 39 (2) (1981) 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
- J. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, Journal of computational physics 100 (2) (1992) 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
- B. Launder, D. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering 3 (2) (1974) 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
- G. Wang, B. Wang, J. Wen, R. Tian, Z. Niu, X. Liu, Experimental study on the hydraulic characteristics of inertia tank after the failure of pump power, Annals of Nuclear Energy 151 (2021), 107885.
- M. Kaviany, Principles of Heat Transfer in Porous Media, Springer Science & Business Media, 2012.