DOI QR코드

DOI QR Code

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • 투고 : 2022.08.06
  • 심사 : 2023.01.25
  • 발행 : 2023.05.25

초록

A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

키워드

과제정보

This work has been carried out under the Nuclear R&D program [NRF-2017M2A8A5015144], funded by the Ministry of Science, ICT, and Future Planning (MSIP).

참고문헌

  1. M. Shailaja, S.v. Narasimhan, Mechanism of oxide scale removal during dilute chemical decontamination of carbon steel surfaces, J. Nucl. Sci. Technol. 30 (1993), https://doi.org/10.1080/18811248, 1993.9734514, 30(6), 524-532. 
  2. B.C. Lee, S.B. Kim, J.K. Moon, S.Y. Park, Evaluation of reaction spontaneity for acidic and reductive dissolutions of corrosion metal oxides using HyBRID chemical decontamination, J. Radioanal. Nucl. Chem. 323 (2020b), https://doi.org/10.1007/s10967-019-06962-3, 323(1), 91-103. 
  3. J. Tan, Z. Zhang, H. Zheng, X. Wang, J. Gao, X. Wu, E.H. Han, S. Yang, P. Huang, Corrosion fatigue model of austenitic stainless steels used in pressurized water reactor nuclear power plants, J. Nucl. Mater. 541 (2020), https://doi.org/10.1016/j.jnucmat.2020.152407, 541, 152407. 
  4. G.Y. Park, C.-L. Kim, Chemical decontamination design for NPP decommissioning and considerations on its methodology, Journal of Nuclear Fuel Cycle and Waste Technology 13 (2015), https://doi.org/10.7733/jnfcwt.2015.13.3, 187, 13(3), 187-199. 
  5. S. Han, S. Hong, S. Nam, W.S. Kim, W. Um, Decontamination of concrete waste from nuclear power plant decommissioning in South Korea, Ann. Nucl. Energy 149 (2020), https://doi.org/10.1016/j.anucene.2020.107795. 
  6. B.Y. Min, W.K. Choi, K.W. Lee, Separation of clean aggregates from contaminated concrete waste by thermal and mechanical treatment, Ann. Nucl. Energy 37 (2010), https://doi.org/10.1016/j.anucene.2009.10.010. 
  7. S. Menon, Decommissioning of nuclear submarines: waste minimization by recycling, in: Nuclear Submarine Decommissioning and Related Problems, 1996, https://doi.org/10.1007/978-94-009-1758-3_18. 
  8. E.B. Borghi, A.E. Regazzoni, A.J.G. Maroto, M.A. Blesa, Reductive dissolution of magnetite by solutions containing EDTA and FeII, J. Colloid Interface Sci. 130 (1989), https://doi.org/10.1016/0021-9797(89)90109-4. 
  9. S.J. Keny, A.G. Kumbhar, G. Venkateswaran, K. Kishore, Radiation effects on the dissolution kinetics of magnetite and hematite in EDTA- and NTA-based dilute chemical decontamination formulations, Radiat. Phys. Chem. 72 (2005), https://doi.org/10.1016/j.radphyschem.2003.12, 055, 72(4), 475-482. 
  10. R. Gilbert, L. Ouellet, Dissolution of metal oxides accumulated in nuclear steam generators: study of solutions containing organic chelating agents, Nucl. Technol. 68 (1985), https://doi.org/10.13182/NT85-A33583, 68(3), 385-394. 
  11. S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, M.J. Kim, Study on the kinetics of iron oxide leaching by oxalic acid, Int. J. Miner. Process. 80 (2006), https://doi.org/10.1016/j.minpro.2006.03, 012, 80(2-4), 144-152. 
  12. S. Kim, S. Park, W. Choi, H. Won, J. Park, B. Seo, Magnetite dissolution by copper catalyzed reductive decontamination, J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 16 (2018), https://doi.org/10.7733/jnfcwt.2018.16.4.421, 16(4). 
  13. B.C. Lee, S.B. Kim, J.K. Moon, Equilibrium calculations for HyBRID decontamination of magnetite: effect of raw amount of CuSO4 on Cu2O formation, Nucl. Eng. Technol. 52 (2020a), https://doi.org/10.1016/j.net.2020.04, 012, 52(11), 2543-2551. 
  14. A.F. White, M.L. Peterson, M.F. Hochella, Electrochemistry and dissolution kinetics of magnetite and ilmenite, Geochem. Cosmochim. Acta 58 (1994), https://doi.org/10.1016/0016-7037(94)90420-0, 58(8), 1859-1857. 
  15. J.A. Harrison, Z.A. Khan, The oxidation of hydrazine on platinum in acid solution, J. Electroanal. Chem. 28 (1970), https://doi.org/10.1016/S0022-0728(70)80288-1, 28(1), 131-138. 
  16. L.C. Rockombeny, J.P. Feraud, B. Queffelec, D. Ode, T. Tzedakis, Electrochemical oxidation of oxalic acid and hydrazinium nitrate on platinum in nitric acid media, Electrochim. Acta 66 (2012), https://doi.org/10.1016/j.electacta.2012.01, 080, 66, 230-238. 
  17. W.K. Choi, H.B. Yang, W.H. Won, C.H. Jung, S.Y. Park, J.K. Moon, S.B. Hwang, I.H. Yoon, K.W. Lee, W.Y. Maeng, Development of Advanced Decontamination Technology for Nuclear Facilities (KAERI/RR-3964/2014). Korea, Republic of, KNS, 2015. 
  18. H. Won, W. Lee, S. Park, C. Jung, W. Choi, J. Moon, Dissolution of magnetite by the hydrazine base solution, in: Proceedings of the KNS 2013 Spring Meeting, 2013, pp. 1CD-ROM). Korea, Republic of: KNS. 
  19. J. Kabai, Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution, Acta Chim. Acad. Sci. Hungar. 78 (1973) 57-73. 
  20. R. Salmimies, P. Vehmaanpera, Acidic acid dissolution of magnetite in mixtures of oxalic and sulfuric acid, Hydrometallurgy 163 (2016) 91-98.  https://doi.org/10.1016/j.hydromet.2016.03.011
  21. W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech. 18 (1951), https://doi.org/10.1115/1, 4010337, 18(3), 293-297. 
  22. T.W. Swaddle, P. Oltmann, Kinetics of the magnetite - maghemite - hematite transformation, with special reference to hydrothermal systems, Can. J. Chem. (1980), https://doi.org/10.1139/v80-279, 58 (17): 1763-1772.