DOI QR코드

DOI QR Code

Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals

  • Islam G. Alhindawy (Nuclear Materials Authority) ;
  • Hany Gamal (Nuclear Materials Authority) ;
  • Aljawhara.H. Almuqrin (Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • K.A. Mahmoud (Nuclear Materials Authority)
  • Received : 2022.11.10
  • Accepted : 2023.02.08
  • Published : 2023.05.25

Abstract

The present work aims to fabricate Na1+xZr2SixP3-xO12 compound at various calcination temperatures based on the zircon mineral. The fabricated compound was calcinated at 250, 500, and 1000℃. The effect of calcination temperature on the structure, crystal phase, and radiation shielding properties was studied for the fabricated compound. The X-ray diffraction diffractometer demonstrates that, the monoclinic crystal phase appeared at a calcination temperature of 250℃ and 500℃ is totally transformed to a high-symmetry hexagonal crystal phase under a calcination temperature of 1000℃. The radiation shielding capacity was also qualified for the fabricated compounds using the Monte Carlo N-Particle transport code in the g-photons energy interval between 15keV and 122keV. The impacts of calcination temperature on the g-ray shielding behavior were clarified in the present study, where the linear attenuation coefficient was enhanced by 218% at energy of 122keV, when the calcination temperature increased from 250 to 1000℃, respectively.

Keywords

Acknowledgement

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

  1. J.-P. Boilot, G. Collin, P. Colomban, Relation structure-fast ion conduction in the NASICON solid solution, J. Solid State Chem. 73 (1) (1988) 160-171. https://doi.org/10.1016/0022-4596(88)90065-5
  2. Francisco del Monte, Willa Larsen, John D. Mackenzie, Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides, J. Am. Ceram. Soc. 83 (3) (2000) 628-634. https://doi.org/10.1111/j.1151-2916.2000.tb01243.x
  3. U. Von Alpen, M.F. Bell, H.H. Hofer, Compositional dependence of the electrochemical and structural parameters in the Nasicon system (Na1+xSixZr2P3-xO12), Solid State Ionics 3-4 (1981) 215-218.
  4. U. von Alpen, M.F. Bell, W. Wichelhaus, Phase transition in nasicon (Na3Zr2-Si2PO12), Mater. Res. Bull. 14 (10) (1979) 1317-1322. https://doi.org/10.1016/0025-5408(79)90010-2
  5. R. Essehli, B. El Bali, S. Benmokhtar, K. Fejfarova, M. Dusek, Hydrothermal synthesis, structural and physico-chemical characterizations of two Nasicon phosphates: M0. 50IITi2 (PO4) 3 (M= Mn, Co), Mater. Res. Bull. 44 (7) (2009) 1502-1510. https://doi.org/10.1016/j.materresbull.2009.02.013
  6. A. Clearfield, M. Subramanian, W. Wang, P. Jerus, The use of hydrothermal procedures to synthesize NASICON and some comments on the stoichiometry of NASICON phases, Solid State Ionics 9 (1983) 895-902. https://doi.org/10.1016/0167-2738(83)90108-X
  7. J.P. Boilot, G. Collin, R. Comes, Phase transition in Nasicon compounds Na3Sc2P3O12 and Na1+xZr2 (P3-xSix) O12, Solid State Ionics 5 (1981) 307-309. https://doi.org/10.1016/0167-2738(81)90254-X
  8. M.A. Khalaf, C.C. Ban, M. Ramli, The constituents, properties and application of heavyweight concrete: a review, Construct. Build. Mater. 215 (2019) 73-89. https://doi.org/10.1016/j.conbuildmat.2019.04.146
  9. M.K.A. Roslan, M. Ismail, A.B.H. Kueh, M.R.M. Zin, High-density concrete: exploring Ferro boron effects in neutron and gamma radiation shielding, Construct. Build. Mater. 215 (2019) 718-725. https://doi.org/10.1016/j.conbuildmat.2019.04.105
  10. Y. Ding, Z. Li, Z. Bai, Z. Jiang, Z. Chen, X. Zhang, C. Lu, H. Dan, T. Duan, Rapid preparation of Nd-doped zirconia ceramics for high-level radioactive waste immobilization, Ceram. Int. 48 (12) (2022) 16773-16777. https://doi.org/10.1016/j.ceramint.2022.02.227
  11. M. Sayyed, E. Hannachi, K. Mahmoud, Y. Slimani, Synthesis of different (RE) BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation, Mater. Chem. Phys. 276 (2022), 125412.
  12. M. Koubisy, K.S. Shaaban, E.A. Wahab, M. Sayyed, K. Mahmoud, Synthesis, structure, mechanical and radiation shielding features of 50SiO2-(48+ X) Na2B4O7-(2-X) MnO2 glasses, Eur. Phys. J. Plus 136 (2) (2021) 156.
  13. M. Almurayshid, S. Alsagabi, Y. Alssalim, Z. Alotaibi, R. Almsalam, Feasibility of polymer-based composite materials as radiation shield, Radiat. Phys. Chem. 183 (2021), 109425.
  14. C.V. More, Z. Alsayed, M. Badawi, A. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review, Environ. Chem. Lett. 19 (3) (2021) 2057-2090. https://doi.org/10.1007/s10311-021-01189-9
  15. I.G. Alhindawy, E.A. Elshehy, M.E. El-Khouly, Y.K. Abdel-Monem, M.S. Atrees, Fabrication of mesoporous NaZrP cation-exchanger for U(VI) ions separation from uranyl leach liquors, Colloids Interf. 3 (4) (2019) 61.
  16. I.G. Alhindawy, H.I. Mira, A.O. Youssef, S.M. Abdelwahab, A.A. Zaher, W.A. ElSaid, E.A. Elshehy, A.M. Abdelkader, Cobalt doped titania-carbon nanosheets with induced oxygen vacancies for photocatalytic degradation of uranium complexes in radioactive wastes, Nanoscale Adv. 4 (24) (2022) 5330-5342. https://doi.org/10.1039/D2NA00467D
  17. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5, La-Ur-03-1987. II, 2003.
  18. M. Sayyed, M.H.M. Zaid, N. Effendy, K.A. Matori, E. Lacomme, K. Mahmoud, M.M. AlShammari, The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses, J. Mater. Res. Technol. 9 (4) (2020) 8429-8438. https://doi.org/10.1016/j.jmrt.2020.05.113
  19. A. Abouhaswa, M. Sayyed, A.S. Altowyan, Y. Al-Hadeethi, K. Mahmoud, Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program, J. Non-Cryst. Solids 543 (2020), 120134.
  20. M. Sayyed, K. Mahmoud, S. Islam, O. Tashlykov, E. Lacomme, K.M. Kaky, Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregates, Radiat. Phys. Chem. 174 (2020), 108925.
  21. K. Naseer, K. Marimuthu, K. Mahmoud, M. Sayyed, The concentration impact of Yb3+ on the bismuth boro-phosphate glasses: physical, structural, optical, elastic, and radiation-shielding properties, Radiat. Phys. Chem. 188 (2021), 109617.
  22. J.A.S. Oh, L. He, A. Plewa, M. Morita, Y. Zhao, T. Sakamoto, X. Song, W. Zhai, K. Zeng, L. Lu, Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: effect of liquid phase sintering, ACS Appl. Mater. Interfaces 11 (43) (2019) 40125-40133. https://doi.org/10.1021/acsami.9b14986
  23. P. Rudolf, A. Clearfield, J. Jorgensen, A time of flight neutron powder rietveld refinement study at elevated temperature on a monoclinic near-stoichiometric NASICON, J. Solid State Chem. 72 (1) (1988) 100-112. https://doi.org/10.1016/0022-4596(88)90013-8
  24. P. Rudolf, A. Clearfield, J. Jorgensen, Rietveld refinement results on three nonstoichiometric monoclinic NASICONs, Solid State Ionics 21 (3) (1986) 213-224. https://doi.org/10.1016/0167-2738(86)90075-5
  25. G.Y. Chao, The crystal structure of gaidonnayite, Na 2 ZrSi 3 O 9. 2H 2 O, Can. Mineral. 23 (1) (1985) 11-15.
  26. L. Levien, C.T. Prewitt, High-pressure crystal structure and compressibility of coesite, Am. Mineral. 66 (3-4) (1981) 324-333.
  27. M.D. Foster, O. Delgado Friedrichs, R.G. Bell, F.A. Almeida Paz, J. Klinowski, Chemical evaluation of hypothetical uninodal zeolites, J. Am. Chem. Soc. 126 (31) (2004) 9769-9775. https://doi.org/10.1021/ja037334j
  28. R. Hazen, L. Finger, D. Agrawal, H. McKinstry, A.J. Perrotta, High-temperature crystal chemistry of sodium zirconium phosphate (NZP), J. Mater. Res. 2 (3) (1987) 329-337. https://doi.org/10.1557/JMR.1987.0329
  29. D. Poojary, R. Borade, F. Campbell III, A. Clearfield, Crystal structure of silicon pyrophosphate (form I) from powder diffraction data, J. Solid State Chem. 112 (1) (1994) 106-112. https://doi.org/10.1006/jssc.1994.1273