DOI QR코드

DOI QR Code

Micro gadolinium oxide dispersed flexible composites developed for the shielding of thermal neutron/gamma rays

  • Boyu Wang (School of Science, Xi'an Polytechnic University) ;
  • Xiaolin Guo (School of Science, Xi'an Polytechnic University) ;
  • Lin Yuan (School of Science, Xi'an Polytechnic University) ;
  • Qinglong Fang (School of Science, Xi'an Polytechnic University) ;
  • Xiaojuan Wang (School of Science, Xi'an Polytechnic University) ;
  • Tianyi Qiu (School of Science, Xi'an Polytechnic University) ;
  • Caifeng Lai (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Qi Wang (Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy) ;
  • Yang Liu (School of Science, Xi'an Polytechnic University)
  • Received : 2022.12.04
  • Accepted : 2023.03.05
  • Published : 2023.05.25

Abstract

In this study, a series of flexible neutron/gamma shielding composites are fabricated through the doping of Gd2O3 into the matrix of SEBS with (MGd2O3: MSEBS) % from 5% to 100%. Neutron transmittance test shows an exponential attenuation with the increase of areal density of Gd, in which the transmittance T ranges from 59.1440% to 35.3026%, with standard deviation less than 2.2743%, mass attenuation coefficient 𝜇m from 0.3194 cm2/g to 0.4999 cm2/g, and half value layer-HVL value from 2.4530 mm to 1.1313 mm. Shielding efficiency of the Gd2O3/SEBS composites is basically improved in comparison with that of B4C/SEBS. The transmittance T, mass/linear attenuation coefficient 𝜇m and 𝜇, HVL and effective atomic number Zeff for the shielding of γ rays (39 keV, 59 keV and 122 keV) are measured and calculated with XCOM as well as MCX programs. Finally, plots of the three dimensional relationships between transmittance, doping amount and thickness are provided to the guidance for engineering shielding design. In summary, the Gd2O3/SEBS composite is proved to be an effective flexible neutron/low energy γ rays shielding material, which could be of potential applications in the field of nuclear technology and nuclear engineering.

Keywords

Acknowledgement

The MCX simulation software used in this study was developed by the NECP team of the School of Energy and Power Engineering, Xi'an Jiaotong University. The NECP team granted us the right to use the software in this work. This work was supported by the Youth Talent Support Program of Xi'an Polytechnic University (No.107020549), Natural Science Basic Research Program of Shaanxi (No. 2022JM-054), and Scientific Research Program Funded by Shaanxi Provincial Education Department (No.22JY023).

References

  1. K. Saidi, A. Omri, Reducing CO2 emissions in OECD countries: do renewable and nuclear energy matter? Prog. Nucl. Energy 126 (2020), 103425 https://doi.org/10.1016/j.pnucene.2020.103425.
  2. M. Sadiq, F. Wen, A.A. Dagestani, Environmental footprint impacts of nuclear energy consumption: the role of environmental technology and globalization in ten largest ecological footprint countries, Nucl. Eng. Technol. 54 (12) (2022) 3672-3682, https://doi.org/10.1016/j.net.2022.05.016.
  3. M. Sadiq, R. Shinwari, M. Usman, I. Ozturk, A. Maghyereh, Linking nuclear energy, human development and carbon emission in BRICS region: do external debt and financial globalization protect the environment? Nucl. Eng. Technol. 54 (9) (2022) 3299-3309, https://doi.org/10.1016/j.net.2022.03.024.
  4. S. Adams, S. Odonkor, Status, opportunities, and challenges of nuclear power development in Sub-Saharan Africa: the case of Ghana, Prog. Nucl. Energy 138 (2021), 103816, https://doi.org/10.1016/j.pnucene.2021.103816.
  5. E. Narkunas, G. Poskas, A. Smaizys, Impact of shield elements on the WWER-440 reactor pressure vessel activation, Ann. Nucl. Energy 130 (2019) 394-401, https://doi.org/10.1016/j.anucene.2019.03.008.
  6. S.L. Chen, D. Bernard, P. Blaise, Attenuation of neutron and photon-induced irradiation damage in pressurized water reactor pressure vessels, Ann. Nucl. Energy 145 (2020), 107601, https://doi.org/10.1016/j.anucene.2020.107601.
  7. X. Liu, Z. Deng, F. Mao, et al., Investigation on the heat resistance of neutron shielding materials for reactor cavity, Nucl. Sci. Tech. 44 (2021) 85-90, https://doi.org/10.11889/j.0253-3219.2021.hjs.44.080602.
  8. S.W. Zhang, Z.L. Wang, C. Li, Y.X. Zhao, Study on neutron shielding performance of hot cell shielding door for nuclear power plant, Ann. Nucl. Energy 166 (2022), 108752, https://doi.org/10.1016/j.anucene.2021.108752.
  9. M. Matijevi c, D. Pevec, K. Trontl, Boration modeling of the PWR biological shield using SCALE6.1 hybrid shielding methodology, Ann. Nucl. Energy 85 (2015) 979-994, https://doi.org/10.1016/j.anucene.2015.07.014.
  10. K.V. Sathish, H.C. Manjunatha, Y.S. Vidya, B.M. Sankarshan, P.S. Damodara Gupta, L. Seenappa, K.N. Sridhar, A.C. Raj, Investigation on shielding properties of lead based alloys, Prog. Nucl. Energy 137 (2021), 103788, https://doi.org/10.1016/j.pnucene.2021.103788.
  11. I.S. Mahmoud, Shams A.M. Issa, Y.B. Saddeek, H.O. Tekin, O. Kilicoglu, T. Alharbi, M.I. Sayyed, T.T. Erguzel, R. Elsaman, Gamma, neutron shielding and mechanical parameters for lead vanadate glasses, Ceram. Int. 45 (11) (2019) 14058-14072, https://doi.org/10.1016/j.ceramint.2019.04.105.
  12. J. Park, S. Her, S. Cho, S.M. Woo, S. Bae, Synthesis and characterization of Polyethylene/B4C composite, and its neutron shielding performance in cementitious materials: experimental and simulation studies, Cement Concr. Compos. 129 (2022), 104458, https://doi.org/10.1016/j.cemconcomp.2022.104458.
  13. E.E. Khozemy, E.F. Salem, Amr El-Hag Ali, Radiation shielding and enhanced thermal characteristics of high-density polyethylene reinforced with Al (OH)3/Pb2O3 for radioactive waste management, Radiat. Phys. Chem. 193 (2022), 109976, https://doi.org/10.1016/j.radphyschem.2022.109976.
  14. G. Hu, G. Shi, H.S. Hu, Q.Z. Yang, B. Yu, W.Q. Sun, Development of gradient composite shielding material for shielding neutrons and gamma rays, Nucl. Eng. Technol. 52 (10) (2020) 2387-2393, https://doi.org/10.1016/j.net.2020.03.029.
  15. V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy 64 (2014) 301-310, https://doi.org/10.1016/j.anucene.2013.10.003.
  16. R. Martellucci, D. Torsello, Potential of biochar reinforced concrete as neutron shielding material, Nucl. Eng. Technol. 54 (9) (2022) 3448-3451, https://doi.org/10.1016/j.net.2022.03.031.
  17. S. Asal, S.A. Erenturk, S. Haciyakupoglu, Bentonite based ceramic materials from a perspective of gamma-ray shielding: preparation, characterization and performance evaluation, Nucl. Eng. Technol. 53 (5) (2021) 1634-1641, https://doi.org/10.1016/j.net.2020.11.009.
  18. E. Zorla, C. Ipbuker, A. Biland, M. Kiisk, S. Kovaljov, A.H. Tkaczyk, V. Gulik, Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron, Nucl. Eng. Des. 313 (2017) 306-318, https://doi.org/10.1016/j.nucengdes.2016.12.029.
  19. K. Mokhtari, M.K. Saadi, H.A. Panahi, G. Jahanfarnia, The shielding properties of the ordinary concrete reinforced with innovative nano polymer particles containing PbO-H3BO3 for dual protection against gamma and neutron radiations, Radiat. Phys. Chem. 189 (2021), 109711, https://doi.org/10.1016/j.radphyschem.2021.109711.
  20. R. Florez, A. Loaiza, C.H.C. Giraldo, H.A. Colorado, Calcium silicate phosphate cement with samarium oxide additions for neutron shielding applications in nuclear industry, Prog. Nucl. Energy 133 (2021), 103650, https://doi.org/10.1016/j.pnucene.2021.103650.
  21. R.M. Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, G. Saleh, M.K. Hamad, K. Ziq, A comprehensive ionizing radiation shielding study of FexSe0.5Te0.5 alloys with various iron concentrations, J. Alloys Compd. 858 (2021), 157636, https://doi.org/10.1016/j.jallcom.2020.157636.
  22. M.H.A. Mhareb, M. Zeama, M. Elsafi, Y.S. Alajerami, M.I. Sayyed, G. Saleh, R.M. Hamad, M.K. Hamad, Radiation shielding features for various tellurium-based alloys: a comparative study, J. Mater. Sci. Mater. Electron. 32 (2021) 26798-26811, https://doi.org/10.1007/s10854-021-07057-0.
  23. N. Rani, Y. Vermani, T. Singh, Gamma radiation shielding properties of some Bi-Sn-Zn alloys, J. Radiol. Prot. 40 (2020) 296-310, https://doi.org/10.1088/1361-6498/ab6aaf.
  24. F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karatas, Study of gamma radiation attenuation properties of some selected ternary alloys, J. Alloys Compd. 782 (2019) 315-322, https://doi.org/10.1016/j.jallcom.2018.12.221.
  25. N. Ekinci, F.I. El-Agawany, K.A. Mahmoud, A. Karabulut, B. Aygun, E. Yousef, Y.S. Rammah, Synthesis, physical properties, and gamma-ray shielding capacity of different Ni-based super alloys, Radiat. Phys. Chem. 186 (2021), 109483, https://doi.org/10.1016/j.radphyschem.2021.109483.
  26. M. Sirin, The effect of titanium (Ti) additive on radiation shielding efficiency of Al25Zn alloy, Prog. Nucl. Energy 128 (2020), 103470, https://doi.org/10.1016/j.pnucene.2020.103470.
  27. M. Salimi, N. Ghal-Eh, E.A. Amirabadi, Characterization of a new shielding rubber for use in neutron-gamma mixed fields, Nucl. Sci. Tech. 29 (2018) 36, https://doi.org/10.1007/s41365-018-0371-7.
  28. A. Gungor, I.K. Akbay, D. Yasar, T. Ozdemir, Flexible X/Gamma ray shielding composite material of EPDM rubber with bismuth trioxide: mechanical, thermal investigations and attenuation tests, Prog. Nucl. Energy 106 (2018) 262-269, https://doi.org/10.1016/j.pnucene.2018.03.021.
  29. S. Nambiar, J.T.W. Yeow, Polymer-composite materials for radiation protection, ACS Appl. Mater. Interfaces 4 (11) (2012) 5717-5726, https://doi.org/10.1021/am300783d.
  30. S.P. Wan, W.X. Wang, H.S. Chen, J. Zhou, Y.Y. Zhang, R.F. Liu, R.Y. Feng, 155/157Gd areal density: a model for design and fabrication of Gd2O3/316L novel neutron shielding composites, Vacuum 176 (2020), 109304, https://doi.org/10.1016/j.vacuum.2020.109304.
  31. Z.G. Xu, L.T. Jiang, Q. Zhang, J. Qiao, D. Gong, G.H. Wu, The design of a novel neutron shielding B4C/Al composite containing Gd, Mater. Des. 111 (2016) 375-381, https://doi.org/10.1016/j.matdes.2016.07.140.
  32. J. Dumazert, R. Coulon, Q. Lecomte, G.H.V. Bertrand, M. Hamel, Gadolinium for neutron detection in current nuclear instrumentation research: a review, Nucl. Instrum. Methods A. 882 (2018) 53-68, https://doi.org/10.1016/j.nima.2017.11.032.
  33. P. Zhang, J. Li, W.X. Wang, X.Y. Tan, L. Xie, F.Y. Guo, The design, microstructure and mechanical properties of a novel Gd2O3/6061Al neutron shielding composite, Vacuum 162 (2019) 92-100, https://doi.org/10.1016/j.vacuum.2019.01.004.
  34. X.Y. Yang, L.L. Song, B. Chang, Q. Yang, X.D. Mao, Q.Y. Huang, Development of Gd-Si-O dispersed 316L stainless steel for improving neutron shielding performance, Nucl. Mater. Energy 23 (2020), 100739, https://doi.org/10.1016/j.nme.2020.100739.
  35. J.S. Park, J. Kim, S.H. Yi, Effects of Gadolinium in Fe based amorphous ribbons with high boron contents on the neutron shielding efficiency, Ann. Nucl. Energy 109 (2017) 365-369, https://doi.org/10.1016/j.anucene.2017.05.046.
  36. S.G. Irim, A.A. Wis, M.A. Keskin, O. Baykara, G. Ozkoc, A. Avci, M. Dogru, M. Karakoc, Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites, Radiat. Phys. Chem. 144 (2018) 434-443, https://doi.org/10.1016/j.radphyschem.2017.10.007.
  37. Z.P. Huo, S. Zhao, G.Q. Zhong, H. Zhang, L.Q. Hu, Surface modified-gadolinium/boron/polyethylene composite with high shielding performance for neutron and gamma-ray, Nucl. Mater. Energy 29 (2021), 101095, https://doi.org/10.1016/j.nme.2021.101095.
  38. B.Y. Wang, T.Y. Qiu, J.N. Yin, M.H. Wang, S.X. Ma, Q. Wang, L. Yuan, Q.L. Fang, G.Q. Zhang, Y. Liu, Properties and thermal neutron areal transmittance of a B4C filled thermoplastic elastomer based rubber composite, Nucl. Mater. Energy 31 (2022), 101193, https://doi.org/10.1016/j.nme.2022.101193.
  39. X.B. Su, L. Hou, S.L. Liu, Y. Yang, Q. Wang, Research on B4C_Al material neutron absorption testing equipment, Nucl. Phys. Rev. 38 (2021) 283-292, https://doi.org/10.11804/NuclPhysRev.38.2020071.
  40. D. Castley, C. Goodwin, J. Liu, Computational and experimental comparison of boron carbide, gadolinium oxide, samarium oxide, and graphene platelets as additives for a neutron shield, Radiat. Phys. Chem. 165 (2019), 108435, https://doi.org/10.1016/j.radphyschem.2019.108435.
  41. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: photon cross sections database, NIST standard reference database 8 (XGAM), NIST, PML, Radiation Phys. Divis. (2010), https://doi.org/10.18434/T48G6X.
  42. M.H. Krisch, F. Sette, C.C. Kao, W.A. Caliebe, J.B. Hastings, K. Hamal ainen, Evidence for a quadrupolar excitation channel at the LIII edge of gadolinium by resonant inelastic X-ray scattering, Phys. Rev. Lett. 74 (24) (1995) 4931-4934, https://doi.org/10.1103/PhysRevLett.74.4931.
  43. P. Sanjiv, X-ray relative intensities at incident photon energies across the Li (i=1-3) absorption edges of elements with 35≤Z≤92, Atom. Data Nucl. Data 100 (2014) 847-858, https://doi.org/10.1016/j.adt.2013.11.006.
  44. Q.M. He, Q. Zheng, J. Li, H.C. Wu, W. Shen, L.Z. Cao, Z.Y. Liu, J.L. Xu, Necp-Mcx, A hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems, Ann. Nucl. Energy 151 (2021), 107978, https://doi.org/10.1016/j.anucene.2020.107978.
  45. Q. Zheng, W. Shen, Q.M. He, J. Li, L.Z. Cao, H.C. Wu, High-efficiency simulation of VENUS-3 neutron-shielding problem with an automatic and enhanced hybrid Monte-Carlo-Deterministic method, Ann. Nucl. Energy 153 (2021), 108039, https://doi.org/10.1016/j.anucene.2020.108039.
  46. Y.J. Zhang, X.T. Guo, C.H. Wang, X.A. Lu, D.F. Wu, M. Zhang, Gadolinium- and lead-containing functional terpolymers for low energy X-ray protection, Nucl. Eng. Technol. 53 (12) (2021) 4130-4136, https://doi.org/10.1016/j.net.2021.06.021.
  47. S. Yonphan, P. Limkitjaroenporn, P. Borisut, S. Kothan, N. Wongdamnern, A.M.S. Alhuthali, M.I. Sayyed, J. Kaewkhao, The photon interactions and buildup factor for gadolinium sodium borate glass: theoretical and experimental approaches, Radiat. Phys. Chem. 188 (2021), 109561, https://doi.org/10.1016/j.radphyschem.2021.109561.