DOI QR코드

DOI QR Code

Experimental validation of ASME strain-based seismic assessment methods using piping elbow test data

  • Jong-Min Lee (Korea University, Department of Mechanical Engineering) ;
  • Jae-Yoon Kim (Korea University, Department of Mechanical Engineering) ;
  • Hyun-Seok Song (Korea University, Department of Mechanical Engineering) ;
  • Yun-Jae Kim (Korea University, Department of Mechanical Engineering) ;
  • Jin-Weon Kim (Chosun University, Department of Nuclear Engineering)
  • 투고 : 2022.10.11
  • 심사 : 2023.01.29
  • 발행 : 2023.05.25

초록

To quantify the conservatism of existing ASME strain-based evaluation methods for seismic loading, this paper presents very low cycle fatigue test data of elbows under various cyclic loading conditions and comparison of evaluation results with experimental failure cycles. For strain-based evaluation methods, the method presented in ASME BPVC CC N-900 and Sec. VIII are used. Predicted failure cycles are compared with experimental failure cycle to quantify the conservatism of evaluation methods. All methods give very conservative failure cycles. The CC N-900 method is the most conservative and prediction results are only ~0.5% of experimental data. For Sec. VIII method, the use of the option using code tensile properties gives ~3% of experimental data, and the use of the material-specific reduction of area can reduce conservatism but still gives ~15% of experimental data.

키워드

과제정보

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20193110100020).

참고문헌

  1. G. Saji, Safety for seismic and tsunami risks: lessons learned from the Fukushima Daiichi disaster, Nucl. Eng. Des. 280 (2014) 449-463.  https://doi.org/10.1016/j.nucengdes.2014.09.013
  2. N.R.C. Us, Recommendations for Enhancing Reactor Safety in the 21st Century: the Near Term Task Review of Insights from the Fukushima Dai-Ichi Accident, US Nuclear Regulatory Commission, Washington, 2011. 
  3. W.P. Chen, A.T. Onesto, V. DeVita, Seismic Fragility Test of a 6-inch Diameter Pipe System, NUREG/CR-4859, Washington DC, USA, 1987. 
  4. G. DeGrassi, J. Nie, C. Hofmayer, Seismic Analysis of Large-Scale Piping Systems for the JNES/NUPEC Ultimate Strength Piping Test Program, NUREG/CR-6983, Washington DC, USA, 1987. 
  5. A. Ravikiran, P.N. Dubey, M.K. Agrawal, G.R. Reddy, R.K. Singh, K.K. Vaze, Experimental and numerical studies of ratcheting in a pressurized piping system under seismic load, J. Pressure Vessel Technol. 137 (2015), 031011. 
  6. I. Nakamura, A. Otani, M. Morishita, M. Shiratori, T. Watakabe, T. Shibutani, Seismic qualification of piping systems by detailed inelastic response analysis part 3 - variation in elastic-plastic analysis results on carbon steel pipes from the benchmark analysis and the parametric analysis, Proceedings of ASME PVP (2017) PVP2017-65316. 
  7. J.W. Kim, I.H. Song, H.D. Kweon, J.S. Kim, Y.J. Kim, Evaluation of deformation and failure behaviors of nuclear piping components under beyond design basis seismic loads using a simulated specimen, J. Pressure Vessel Technol. 142 (2020), 051305. 
  8. ASME. Rules for Construction of Nuclear Facility Components, ASME BPVC Section III, New York, 2019. 
  9. S. Vishnuvardhan, G. Raghava, Saravanan M. Gandhi, D.M. Pukazhendhi, S. Goyal, P. Arora, S.K. Gupta, Fatigue ratcheting studies on TP304 LN stainless steel straight pipes, Procedia Eng. 2 (2010) 2209-2218.  https://doi.org/10.1016/j.proeng.2010.03.237
  10. S. Vishnuvardhan, G. Raghava, P. Gandhi, M. Saravanan, D.M. Pukazhendhi, S. Goyal, S.K. Gupta, V. Bhasin, K.K. Vaze, Ratcheting studies on type 304LN stainless steel elbows subjected to combined internal pressure and in-plane bending moment, J. Pressure Vessel Technol. 134 (2012), 041203. 
  11. T. Hassan, M. Rahman, S. Bari, Low-cycle fatigue and ratcheting responses of elbow piping components, J. Pressure Vessel Technol. 137 (2015), 031010. 
  12. A. Otani, I. Nakamura, H. Takada, M. Shiratori, Consideration on seismic design margin of elbow in piping, Proceedings of ASME PVP (2011) PVP2011-57146. 
  13. JSME S NC1-2005 in Japanese. 
  14. G.E. Varelis, S.A. Karamanos, A.M. Gresnigt, Pipe elbows under strong cyclic loading, J. Pressure Vessel Technol. 135 (2013), 011207. 
  15. ASME, Process Piping, vol. 3, ASME standard B31., New York, 2006. 
  16. JSME, Codes for Nuclear Power Generation Facilities - Rules on Design and Construction for Nuclear Power Plant: Alternative Design for Seismic Design of Seismic S Class Steel Piping Based on Elastic-Plastic Response Analysis, NCCC-008, 2019. 
  17. J.S. Kim, H.S. Jang, Precise dynamic finite element elastic-plastic seismic analysis considering welds for nuclear power plants, Nucl. Eng. Technol. 54 (2022) 2550-2563.  https://doi.org/10.1016/j.net.2022.01.032
  18. G.H. Koo, S.W. Ahn, J.K. Hwang, J. Kim, Shaking table tests to validate inelastic seismic analysis method applicable to nuclear metal components, Appl. Sci. 11 (2021) 9264. 
  19. J.S. Kim, J.Y. Kim, An efficient simplified elastic-plastic analysis procedure using engineering formula for strain-based fatigue assessment of nuclear safety class 1 piping system subjected to severe seismic loads, Int. J. Fatig. 151 (2021), 106390. 
  20. ASME, Alternative Rules for Level D Service Limit of Class 1, 2 and 3 Piping System, ASME BPVC Code Case N-900, New York, 2019. 
  21. G.H. Koo, J.S. Kim, Y.J. Kim, Feasibility study on strain-based seismic design criteria for nuclear components, Energies 13 (2020) 4435. 
  22. D.J. Chang, J.M. Lee, H.S. Nam, N.S. Huh, Y.J. Kim, H.D. Kweon, J.S. Kim, Effect of damage evaluation method and cyclic hardening models on strain-based fatigue assessment to a piping system under seismic loads, J. Mech. Sci. Technol. 34 (7) (2020) 2833-2844.  https://doi.org/10.1007/s12206-020-0616-3
  23. ASME, Rules for Construction of Pressure Vessels, ASME BPVC Section VIII, New York, 2019. 
  24. ASTM, Standard Test Methods for Tension Testing of Metallic Materials, E8-15, American Society for Testing and Materials, 2015. 
  25. W. Prager, A new method of analyzing stresses and strains in work hardening plastic solids, J. Appl. Mech. 23 (1956) 493-496.  https://doi.org/10.1115/1.4011389
  26. ASME, Materials, ASME BPVC Section II, New York, 2019. 
  27. ABAQUS, ABAQUS Version 2018, Dassault Systems, 2018. 
  28. S. Bari, T. Hassan, Anatomy of coupled constitutive models for ratcheting simulation, Int. J. Plast. 16 (2000) 381-409.  https://doi.org/10.1016/S0749-6419(99)00059-5
  29. J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solid. 17 (1969) 201-217.  https://doi.org/10.1016/0022-5096(69)90033-7
  30. A.M. Kanvinde, G.G. Deierlein, Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra-low cycle fatigue, J. Eng. Mech. 133 (6) (2007) 701-712.  https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(701)
  31. O.K. Chopra, W.J. Shack, Effects of LWR Coolant Environments on the Fatigue Life of Reactor Materials, Final Report. NUREG/CR-6909, Argonne National Laboratory, 2007. ANL-06/08. 
  32. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering: an Integrated Approach, John Wiley & Sons, 2018. 
  33. N. Kasahara, I. Nakamura, H. Machida, K. Okamoto, Structural analysis approach for risk assessment under BDBE, Proceedings of ASME PVP (2018) PVP2018-84353. 
  34. N. Kasahara, T. Sato, A. Biahoianu, Contribution to safety enhancement for BDBE in structure and material fields, Proceedings of ASME PVP (2018) PVP2018-84353.