DOI QR코드

DOI QR Code

Development of transient Monte Carlo in a fissile system with β-delayed emission from individual precursors using modified open source code OpenMC(TD)

  • J. Romero-Barrientos (Centro de Investigacion en Física Nuclear y Espectroscopia de Neutrones CEFNEN, Comision Chilena de Energia Nuclear) ;
  • F. Molina (Centro de Investigacion en Física Nuclear y Espectroscopia de Neutrones CEFNEN, Comision Chilena de Energia Nuclear) ;
  • J.I. Marquez Damian (Spallation Physics Group, European Spallation Source ERIC) ;
  • M. Zambra (Centro de Investigacion en Física Nuclear y Espectroscopia de Neutrones CEFNEN, Comision Chilena de Energia Nuclear) ;
  • P. Aguilera (Centro de Investigacion en Física Nuclear y Espectroscopia de Neutrones CEFNEN, Comision Chilena de Energia Nuclear) ;
  • F. Lopez-Usquiano (Centro de Investigacion en Física Nuclear y Espectroscopia de Neutrones CEFNEN, Comision Chilena de Energia Nuclear) ;
  • S. Parra (Centro de Investigacion en Física Nuclear y Espectroscopia de Neutrones CEFNEN, Comision Chilena de Energia Nuclear)
  • Received : 2022.10.11
  • Accepted : 2023.02.03
  • Published : 2023.05.25

Abstract

In deterministic and Monte Carlo transport codes, b-delayed emission is included using a group structure where all of the precursors are grouped together in 6 groups or families, but given the increase in computational power, nowadays there is no reason to keep this structure. Furthermore, there have been recent efforts to compile and evaluate all the available b-delayed neutron emission data and to measure new and improved data on individual precursors. In order to be able to perform a transient Monte Carlo simulation, data from individual precursors needs to be implemented in a transport code. This work is the first step towards the development of a tool to explore the effect of individual precursors in a fissile system. In concrete, individual precursor data is included by expanding the capabilities of the open source Monte Carlo code OpenMC. In the modified code - named Time Dependent OpenMC or OpenMC(TD)- time dependency related to β-delayed neutron emission was handled by using forced decay of precursors and combing of the particle population. The data for continuous energy neutron cross-sections was taken from JEFF-3.1.1 library. Regarding the data needed to include the individual precursors, cumulative yields were taken from JEFF-3.1.1 and delayed neutron emission probabilities and delayed neutron spectra were taken from ENDF-B/VIII.0. OpenMC(TD) was tested in a monoenergetic system, an energy dependent unmoderated system where the precursors were taken individually or in a group structure, and in a light-water moderated energy dependent system, using 6-groups, 50 and 40 individual precursors. Neutron flux as a function of time was obtained for each of the systems studied. These results show the potential of OpenMC(TD) as a tool to study the impact of individual precursor data on fissile systems, thus motivating further research to simulate more complex fissile systems.

Keywords

Acknowledgement

J. Romero-Barrientos acknowledges support from Programa Nacional de Becas de Postgrado under grant 21151413. F. Molina acknowledges support from ANID FONDECYT Regular Project 1171467, ANID FONDECYT Regular Project 1221364, and ANID - Millennium Science Initiative Program - ICN2019_044.

References

  1. G. Keepin, T. Wimett, R. Zeigler, Delayed neutrons from fissionable isotopes of uranium, plutonium and thorium, Journal of Nuclear Energy 6 (1) (1954), https://doi.org/10.1016/0891-3919(57)90178-X (1957) 2- 21, http://www.sciencedirect.com/science/article/pii/089139195790178X.
  2. D. Brown, et al., ENDF/B-VIII.0: the 8th Major Release of the Nuclear Reaction Data Library with CIELO-Project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148, 2018, pp. 1-142, https://doi.org/10.1016/j.nds.2018.02.001. , special Issue on Nuclear Reaction Data, http://www.sciencedirect.com/science/article/pii/S0090375218300206.
  3. P. Dimitriou, I. Dillmann, B. Singh, V. Piksaikin, K. Rykaczewski, J. Tain, A. Algora, K. Banerjee, I. Borzov, D. Cano-Ott, S. Chiba, M. Fallot, D. Foligno, R. Grzywacz, X. Huang, T. Marketin, F. Minato, G. Mukherjee, B. Rasco, A. Sonzogni, M. Verpelli, A. Egorov, M. Estienne, L. Giot, D. Gremyachkin, M. Madurga, E. McCutchan, E. Mendoza, K. Mitrofanov, M. Narbonne, P. Romojaro, A. Sanchez-Caballero, N. Scielzo, Development of a reference database for beta-delayed neutron emission, Nuclear Data Sheets 173 (2021) 144-238, https://doi.org/10.1016/j.nds.2021.04.006. , special Issue on Nuclear Reaction Data, https://www.sciencedirect.com/science/article/pii/S0090375221000168.
  4. International Atomic Energy Agency, IAEA CRP on a Reference Database for Beta-Delayed Neutron Emission, 2017. https://www-nds.iaea.org/beta-delayed-neutron/.
  5. P.K. Romano, et al., OpenMC: a state-of-the-art Monte Carlo code for research and development, Annals of Nuclear Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048. , joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, http://www.sciencedirect.com/science/article/pii/S030645491400379X.
  6. J. Romero-Barrientos, Time-dependent Monte Carlo in Fissile Systems with Beta-Delayed Neutron Precursors, Ph.D. thesis, 2021. arXiv:2101.09338.
  7. J. Romero-Barrientos, Time-dependent Monte Carlo in Fissile Systems with Beta-Delayed Neutron Precursors, Ph.D. thesis, Universidad de Chile, 2022. URL, https://repositorio.uchile.cl/handle/2250/184722.
  8. K.-L. Kratz, Relevance of beta-delayed neutron data for reactor, nuclear physics and astrophysics applications, AIP Conference Proceedings 1645 (1) (2015) 109-120, https://doi.org/10.1063/1.4909565, arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.4909565, https://aip.scitation.org/doi/abs/10.1063/1.4909565.
  9. Proceedings of the consultants meeting on delayed neutron properties. URL https://www-nds.iaea.org/publications/indc/indc-nds-0107.pdf.
  10. B.L. Sjenitzer, J.E. Hoogenboom, Dynamic Monte Carlo method for nuclear reactor kinetics calculations, Nuclear Science and Engineering 175 (1) (2013) 94-107, arXiv:https://doi.org/10.13182/NSE12-44, doi:10.13182/NSE12-44. URL https://doi.org/10.13182/NSE12-44.
  11. M.C. Brady, Evaluation and Application of Delayed Neutron Precursor Data, Ph.D. thesis, Los Alamos National Laboratory, United States, 4 1989, https://doi.org/10.2172/6187550.
  12. S. Koranne, Hierarchical Data Format 5 : HDF5, Springer US, Boston, MA, 2011, pp. 191-200, https://doi.org/10.1007/978-1-4419-7719-9_10.
  13. R. Macfarlane, D.W. Muir, R.M. Boicourt, A.C. Kahler III, J.L. Conlin, The NJOY Nuclear Data Processing System, Version, Technical Report Los Alamos National Laboratory, 2016, https://doi.org/10.2172/1338791. TRN: US1701456.
  14. K.S. Chaudri, S.M. Mirza, Burnup dependent Monte Carlo neutron physics calculations of IAEA MTR benchmark, Progress in Nuclear Energy 81 (2015) 43-52, https://doi.org/10.1016/j.pnucene.2014.12.018.
  15. J. Chen, L. Cao, C. Zhao, Z. Liu, Development of Subchannel Code SUBSC for high-fidelity multi-physics coupling application, Energy Procedia 127 (2017) 264-274, https://doi.org/10.1016/j.egypro.2017.08.121, international Youth Nuclear Congress 2016, IYNC2016, 24-30 July 2016, Hangzhou, China.
  16. J.-Y. Li, L. Gu, H.-S. Xu, N. Korepanova, R. Yu, Y.-L. Zhu, C.-P. Qin, CAD modeling study on FLUKA and OpenMC for accelerator driven system simulation, Annals of Nuclear Energy 114 (2018) 329-341, https://doi.org/10.1016/j.anucene.2017.12.050.
  17. I. Variansyah, B.R. Betzler, W.R. Martin, Multigroup constant calculation with static α-eigenvalue Monte Carlo for time-dependent neutron transport simulations, Nuclear Science and Engineering 194 (11) (2020) 1025-1043, https://doi.org/10.1080/00295639.2020.1743578.
  18. J.A. Walsh, B. Forget, K.S. Smith, F.B. Brown, On-the-fly Doppler broadening of unresolved resonance region cross sections, Progress in Nuclear Energy 101 (2017) 444-460, https://doi.org/10.1016/j.pnucene.2017.05.032, special Issue on the Physics of Reactors International Conference PHYSOR 2016: Unifying Theory and Experiments in the 21st Century.
  19. J.A. Walsh, P.K. Romano, B. Forget, K.S. Smith, Optimizations of the energy grid search algorithm in continuous-energy Monte Carlo particle transport codes, Computer Physics Communications 196 (2015) 134-142, https://doi.org/10.1016/j.cpc.2015.05.025.
  20. P.K. Romano, A.R. Siegel, B. Forget, K. Smith, Data decomposition of Monte Carlo particle transport simulations via tally servers, Journal of Computational Physics 252 (2013) 20-36, https://doi.org/10.1016/j.jcp.2013.06.011.
  21. B. Zhang, X. Yuan, Y. Zhang, H. Tang, L. Cao, Development of a versatile depletion code AMAC, Annals of Nuclear Energy 143 (2020), 107446, https://doi.org/10.1016/j.anucene.2020.107446.
  22. X. Peng, J. Liang, B. Forget, K. Smith, Calculation of adjoint-weighted reactor kinetics parameters in OpenMC, Annals of Nuclear Energy 128 (2019) 231-235, https://doi.org/10.1016/j.anucene.2019.01.007.
  23. J. Romero-Barrientos, J.M. Damian, F. Molina, M. Zambra, P. Aguilera, F. Lopez-Usquiano, B. Parra, A. Ruiz, Calculation of kinetic parameters βeff and λ with modified open source Monte Carlo code openmc(td), Nuclear Engineering and Technology 54 (3) (2022) 811-816, https://doi.org/10.1016/j.net.2021.09.020. URL, https://www.sciencedirect.com/science/article/pii/S1738573321005623. URL.
  24. D. Foligno, New Evaluation of Delayed-Neutron Data and Associated Co-variances, Ph.D. thesis, Aix Marseille Universite, 2020.
  25. M. Kellett, O. Kellett, R. Mills, JEFF Report 20: the JEFF-3.1/-3.1.1 Radioactive Decay Data and Fission Yields Sub-libraries, 2009.
  26. D. Legrady, J.E. Hoogenboom, Scouting the feasability of Monte Carlo reactor dynamics simulations, International Conference on the Physics of Nuclear Reactors (2008) 1-5.
  27. T. Booth, A Weight (Charge) Conserving Importance-Weighted Comb for Monte Carlo, Conference: American Nuclear Society (ANS) Radiation Protection and Shielding Division Topical Meeting on Advancements and Applications in Radiation Protection and Shielding (TRN: 96:002172).
  28. D. Legrady, M. Halasz, J. Kophazi, B. Molnar, G. Tolnai, Population-based variance reduction for dynamic Monte Carlo, Annals of Nuclear Energy 149 (2020) 107752. doi:https://doi.org/10.1016/j.anucene.2020.107752. URL {https://www.sciencedirect.com/science/article/pii/S0306454920304503}.
  29. B. Molnar, G. Tolnai, D. Legrady, A GPU-based direct Monte Carlo simulation of time dependence in nuclear reactors, Annals of Nuclear Energy 132 (2019) 46-63, https://doi.org/10.1016/j.anucene.2019.03.024. URL, https://www.sciencedirect.com/science/article/pii/S0306454919301495.
  30. C. de Mulatier, E. Dumonteil, A. Rosso, A. Zoia, The critical catastrophe revisited, Journal of Statistical Mechanics: Theory and Experiment (2015), P08021, https://doi.org/10.1088/2F1742-5468/2F2015/2F08/2Fp08021.
  31. International Evaluation of Neutron Cross-Section Standards, International Atomic Energy Agency, Vienna, 2007. URL, https://www.iaea.org/publications/7653/international-evaluation-of-neutron-cross-section-standards.