Acknowledgement
J. Romero-Barrientos acknowledges support from Programa Nacional de Becas de Postgrado under grant 21151413. F. Molina acknowledges support from ANID FONDECYT Regular Project 1171467, ANID FONDECYT Regular Project 1221364, and ANID - Millennium Science Initiative Program - ICN2019_044.
References
- G. Keepin, T. Wimett, R. Zeigler, Delayed neutrons from fissionable isotopes of uranium, plutonium and thorium, Journal of Nuclear Energy 6 (1) (1954), https://doi.org/10.1016/0891-3919(57)90178-X (1957) 2- 21, http://www.sciencedirect.com/science/article/pii/089139195790178X.
- D. Brown, et al., ENDF/B-VIII.0: the 8th Major Release of the Nuclear Reaction Data Library with CIELO-Project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148, 2018, pp. 1-142, https://doi.org/10.1016/j.nds.2018.02.001. , special Issue on Nuclear Reaction Data, http://www.sciencedirect.com/science/article/pii/S0090375218300206.
- P. Dimitriou, I. Dillmann, B. Singh, V. Piksaikin, K. Rykaczewski, J. Tain, A. Algora, K. Banerjee, I. Borzov, D. Cano-Ott, S. Chiba, M. Fallot, D. Foligno, R. Grzywacz, X. Huang, T. Marketin, F. Minato, G. Mukherjee, B. Rasco, A. Sonzogni, M. Verpelli, A. Egorov, M. Estienne, L. Giot, D. Gremyachkin, M. Madurga, E. McCutchan, E. Mendoza, K. Mitrofanov, M. Narbonne, P. Romojaro, A. Sanchez-Caballero, N. Scielzo, Development of a reference database for beta-delayed neutron emission, Nuclear Data Sheets 173 (2021) 144-238, https://doi.org/10.1016/j.nds.2021.04.006. , special Issue on Nuclear Reaction Data, https://www.sciencedirect.com/science/article/pii/S0090375221000168.
- International Atomic Energy Agency, IAEA CRP on a Reference Database for Beta-Delayed Neutron Emission, 2017. https://www-nds.iaea.org/beta-delayed-neutron/.
- P.K. Romano, et al., OpenMC: a state-of-the-art Monte Carlo code for research and development, Annals of Nuclear Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048. , joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, http://www.sciencedirect.com/science/article/pii/S030645491400379X.
- J. Romero-Barrientos, Time-dependent Monte Carlo in Fissile Systems with Beta-Delayed Neutron Precursors, Ph.D. thesis, 2021. arXiv:2101.09338.
- J. Romero-Barrientos, Time-dependent Monte Carlo in Fissile Systems with Beta-Delayed Neutron Precursors, Ph.D. thesis, Universidad de Chile, 2022. URL, https://repositorio.uchile.cl/handle/2250/184722.
- K.-L. Kratz, Relevance of beta-delayed neutron data for reactor, nuclear physics and astrophysics applications, AIP Conference Proceedings 1645 (1) (2015) 109-120, https://doi.org/10.1063/1.4909565, arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.4909565, https://aip.scitation.org/doi/abs/10.1063/1.4909565.
- Proceedings of the consultants meeting on delayed neutron properties. URL https://www-nds.iaea.org/publications/indc/indc-nds-0107.pdf.
- B.L. Sjenitzer, J.E. Hoogenboom, Dynamic Monte Carlo method for nuclear reactor kinetics calculations, Nuclear Science and Engineering 175 (1) (2013) 94-107, arXiv:https://doi.org/10.13182/NSE12-44, doi:10.13182/NSE12-44. URL https://doi.org/10.13182/NSE12-44.
- M.C. Brady, Evaluation and Application of Delayed Neutron Precursor Data, Ph.D. thesis, Los Alamos National Laboratory, United States, 4 1989, https://doi.org/10.2172/6187550.
- S. Koranne, Hierarchical Data Format 5 : HDF5, Springer US, Boston, MA, 2011, pp. 191-200, https://doi.org/10.1007/978-1-4419-7719-9_10.
- R. Macfarlane, D.W. Muir, R.M. Boicourt, A.C. Kahler III, J.L. Conlin, The NJOY Nuclear Data Processing System, Version, Technical Report Los Alamos National Laboratory, 2016, https://doi.org/10.2172/1338791. TRN: US1701456.
- K.S. Chaudri, S.M. Mirza, Burnup dependent Monte Carlo neutron physics calculations of IAEA MTR benchmark, Progress in Nuclear Energy 81 (2015) 43-52, https://doi.org/10.1016/j.pnucene.2014.12.018.
- J. Chen, L. Cao, C. Zhao, Z. Liu, Development of Subchannel Code SUBSC for high-fidelity multi-physics coupling application, Energy Procedia 127 (2017) 264-274, https://doi.org/10.1016/j.egypro.2017.08.121, international Youth Nuclear Congress 2016, IYNC2016, 24-30 July 2016, Hangzhou, China.
- J.-Y. Li, L. Gu, H.-S. Xu, N. Korepanova, R. Yu, Y.-L. Zhu, C.-P. Qin, CAD modeling study on FLUKA and OpenMC for accelerator driven system simulation, Annals of Nuclear Energy 114 (2018) 329-341, https://doi.org/10.1016/j.anucene.2017.12.050.
- I. Variansyah, B.R. Betzler, W.R. Martin, Multigroup constant calculation with static α-eigenvalue Monte Carlo for time-dependent neutron transport simulations, Nuclear Science and Engineering 194 (11) (2020) 1025-1043, https://doi.org/10.1080/00295639.2020.1743578.
- J.A. Walsh, B. Forget, K.S. Smith, F.B. Brown, On-the-fly Doppler broadening of unresolved resonance region cross sections, Progress in Nuclear Energy 101 (2017) 444-460, https://doi.org/10.1016/j.pnucene.2017.05.032, special Issue on the Physics of Reactors International Conference PHYSOR 2016: Unifying Theory and Experiments in the 21st Century.
- J.A. Walsh, P.K. Romano, B. Forget, K.S. Smith, Optimizations of the energy grid search algorithm in continuous-energy Monte Carlo particle transport codes, Computer Physics Communications 196 (2015) 134-142, https://doi.org/10.1016/j.cpc.2015.05.025.
- P.K. Romano, A.R. Siegel, B. Forget, K. Smith, Data decomposition of Monte Carlo particle transport simulations via tally servers, Journal of Computational Physics 252 (2013) 20-36, https://doi.org/10.1016/j.jcp.2013.06.011.
- B. Zhang, X. Yuan, Y. Zhang, H. Tang, L. Cao, Development of a versatile depletion code AMAC, Annals of Nuclear Energy 143 (2020), 107446, https://doi.org/10.1016/j.anucene.2020.107446.
- X. Peng, J. Liang, B. Forget, K. Smith, Calculation of adjoint-weighted reactor kinetics parameters in OpenMC, Annals of Nuclear Energy 128 (2019) 231-235, https://doi.org/10.1016/j.anucene.2019.01.007.
- J. Romero-Barrientos, J.M. Damian, F. Molina, M. Zambra, P. Aguilera, F. Lopez-Usquiano, B. Parra, A. Ruiz, Calculation of kinetic parameters βeff and λ with modified open source Monte Carlo code openmc(td), Nuclear Engineering and Technology 54 (3) (2022) 811-816, https://doi.org/10.1016/j.net.2021.09.020. URL, https://www.sciencedirect.com/science/article/pii/S1738573321005623. URL.
- D. Foligno, New Evaluation of Delayed-Neutron Data and Associated Co-variances, Ph.D. thesis, Aix Marseille Universite, 2020.
- M. Kellett, O. Kellett, R. Mills, JEFF Report 20: the JEFF-3.1/-3.1.1 Radioactive Decay Data and Fission Yields Sub-libraries, 2009.
- D. Legrady, J.E. Hoogenboom, Scouting the feasability of Monte Carlo reactor dynamics simulations, International Conference on the Physics of Nuclear Reactors (2008) 1-5.
- T. Booth, A Weight (Charge) Conserving Importance-Weighted Comb for Monte Carlo, Conference: American Nuclear Society (ANS) Radiation Protection and Shielding Division Topical Meeting on Advancements and Applications in Radiation Protection and Shielding (TRN: 96:002172).
- D. Legrady, M. Halasz, J. Kophazi, B. Molnar, G. Tolnai, Population-based variance reduction for dynamic Monte Carlo, Annals of Nuclear Energy 149 (2020) 107752. doi:https://doi.org/10.1016/j.anucene.2020.107752. URL {https://www.sciencedirect.com/science/article/pii/S0306454920304503}.
- B. Molnar, G. Tolnai, D. Legrady, A GPU-based direct Monte Carlo simulation of time dependence in nuclear reactors, Annals of Nuclear Energy 132 (2019) 46-63, https://doi.org/10.1016/j.anucene.2019.03.024. URL, https://www.sciencedirect.com/science/article/pii/S0306454919301495.
- C. de Mulatier, E. Dumonteil, A. Rosso, A. Zoia, The critical catastrophe revisited, Journal of Statistical Mechanics: Theory and Experiment (2015), P08021, https://doi.org/10.1088/2F1742-5468/2F2015/2F08/2Fp08021.
- International Evaluation of Neutron Cross-Section Standards, International Atomic Energy Agency, Vienna, 2007. URL, https://www.iaea.org/publications/7653/international-evaluation-of-neutron-cross-section-standards.