DOI QR코드

DOI QR Code

Seismic performance evaluation of reactor containment building considering effects of concrete material models and prestressing forces

  • Bidhek Thusa (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Duy-Duan Nguyen (Department of Civil Engineering, Vinh University) ;
  • Md Samdani Azad (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Tae-Hyung Lee (Department of Civil and Environmental Engineering, Konkuk University)
  • Received : 2022.10.19
  • Accepted : 2023.02.03
  • Published : 2023.05.25

Abstract

The reactor containment building (RCB) in nuclear power plants (NPPs) plays an important role in protecting the reactor systems from external loads as well as preventing radioactive leaking. As we witnessed the nuclear disaster at Fukushima Daiichi (Japan) in 2011, the earthquake is one of the major threats to NPPs. The purpose of this study is to evaluate effects of concrete material models and presstressing forces on the seismic performance evaluation of RCB in NPPs. A typical RCB designed in Korea is employed for a case study. Detailed three-dimensional nonlinear finite element models of RCB are developed in ANSYS. A series of pushover analyses are then performed to obtain the pushover curves of RCB. Different capacity curves are compared to recognize the influence of different material models on the nonlinear behavior of RCB. Additionally, the effects of prestressing forces on the seismic performances of the structure are also investigated. Moreover, a set of damage states corresponding to damage evolutions of the structures is proposed in this study.

Keywords

Acknowledgement

This research is supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20201510100020).

References

  1. N. Nakamura, S. Akita, T. Suzuki, M. Koba, S. Nakamura, T. Nakano, Study of ultimate seismic response and fragility evaluation of nuclear power building using nonlinear three-dimensional finite element model, Nucl. Eng. Des. 240 (1) (2010) 166-180. https://doi.org/10.1016/j.nucengdes.2009.10.018
  2. Y.N. Huang, A.S. Whittaker, N. Luco, A probabilistic seismic risk assessment procedure for nuclear power plants:(I) Methodology, Nucl. Eng. Des. 241 (9) (2011) 3996-4003. https://doi.org/10.1016/j.nucengdes.2011.06.051
  3. Y.N. Huang, A.S. Whittaker, N. Luco, A probabilistic seismic risk assessment procedure for nuclear power plants:(II) Application, Nucl. Eng. Des. 241 (9) (2011) 3985-3995. https://doi.org/10.1016/j.nucengdes.2011.06.050
  4. P.Y. Yawson, D. Lombardi, Probabilistic seismic risk assessment of nuclear reactor in a hypothetical UK site, Soil Dynam. Earthq. Eng. 113 (2018) 278-285. https://doi.org/10.1016/j.soildyn.2018.06.007
  5. V. Jussila, Y. Li, L. Fulop, Statistical analysis of the variation of floor vibrations in nuclear power plants subject to seismic loads, Nucl. Eng. Des. 309 (2016) 84-96. https://doi.org/10.1016/j.nucengdes.2016.09.005
  6. J.D. Segarra, M. Bensi, T. Weaver, M. Modarres, Extension of probabilistic seismic hazard analysis to account for the spatial variability of ground motions at a multi-unit nuclear power plant hard-rock site, Struct. Saf. 85 (2020), 101958.
  7. S. Kwag, J. Park, I.K. Choi, Development of efficient complete-sampling-based seismic PSA method for nuclear power plant, Reliab. Eng. Syst. Saf. 197 (2020), 106824.
  8. J. Wang, M. Lin, Seismic probabilistic risk analysis and application in a nuclear power plant, Nucl. Technol. 203 (3) (2018) 221-231. https://doi.org/10.1080/00295450.2018.1448671
  9. T. Zhou, M. Modarres, E.L. Droguett, An improved multi-unit nuclear plant seismic probabilistic risk assessment approach, Reliab. Eng. Syst. Saf. 171 (2018) 34-47. https://doi.org/10.1016/j.ress.2017.11.015
  10. G.A. Banyay, M.D. Shields, J.C. Brigham, Efficient global sensitivity analysis of structural vibration for a nuclear reactor system subject to nonstationary loading, Nucl. Eng. Des. 361 (2020), 110544.
  11. B. Choi, A. Nishida, Y. Li, K. Muramatsu, T. Takada, Epistemic uncertainty quantification of floor responses for a nuclear reactor building, in: International Conference on Nuclear Engineering, vol. 51449, American Society of Mechanical Engineers, 2018, V002T14A017.
  12. B. Choi, A. Nishida, T. Shiomi, K. Muramatsu, T. Takada, Uncertainty of different modeling methods of NPP building subject to seismic ground motions, in: Transactions of 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT-25), Charlotte, NC, USA, 2019.
  13. S. Lyons, S. Vasavada, Seismic probabilistic risk assessment of nuclear power plants: 10 CFR 50.69 assumptions and sources of uncertainty, in: ASME International Mechanical Engineering Congress and Exposition, vol. 52187, American Society of Mechanical Engineers, 2018, V013T05A047.
  14. J.H. Kim, I.K. Choi, J.H. Park, Uncertainty analysis of system fragility for seismic safety evaluation of NPP, Nucl. Eng. Des. 241 (7) (2011) 2570-2579. https://doi.org/10.1016/j.nucengdes.2011.04.031
  15. S. Syed, A. Gupta, Seismic fragility of RC shear walls in nuclear power plant part 2: influence of uncertainty in material parameters on fragility of concrete shear walls, Nucl. Eng. Des. 295 (2015) 587-596. https://doi.org/10.1016/j.nucengdes.2015.09.038
  16. W. Chen, Y. Zhang, D. Wang, Damage development analysis of the whole nuclear power plant of AP1000 type under strong main-aftershock sequences, Nucl. Eng. Des. 371 (2021), 110975.
  17. X. Bao, M.H. Zhang, C.H. Zhai, Fragility analysis of a containment structure under far-fault and near-fault seismic sequences considering post-mainshock damage states, Eng. Struct. 198 (2019), 109511.
  18. I.K. Choi, Y.S. Choun, S.M. Ahn, J.M. Seo, Probabilistic seismic risk analysis of CANDU containment structure for near-fault earthquakes, Nucl. Eng. Des. 238 (6) (2008) 1382-1391. https://doi.org/10.1016/j.nucengdes.2007.11.001
  19. D.D. Nguyen, B. Thusa, T.H. Lee, Seismic fragility of base-isolated nuclear power plant considering near-fault ground motions, J. Korean Soc.Hazard. Mitig. 18 (7) (2018) 315-321. https://doi.org/10.9798/KOSHAM.2018.18.7.315
  20. S. Jin, J. Gong, Damage performance based seismic capacity and fragility analysis of existing concrete containment structure subjected to near fault ground motions, Nucl. Eng. Des. 360 (2020), 110478.
  21. S. Jin, H. Rong, X. Lyu, Probabilistic seismic performance evaluation of nuclear containment structure subjected to far-fault ground motions, Structures 32 (2021) 2232-2246. https://doi.org/10.1016/j.istruc.2021.04.013
  22. C. Zhao, N. Yu, Y. Oz, J. Wang, Y.L. Mo, Seismic fragility analysis of nuclear power plant structure under far-field ground motions, Eng. Struct. 219 (2020), 110890.
  23. S.G. Cho, Y.H. Joe, Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea, Nucl. Eng. Des. 235 (17-19) (2005) 1867-1874. https://doi.org/10.1016/j.nucengdes.2005.05.021
  24. C. Medel-Vera, T. Ji, Seismic probabilistic risk analysis based on stochastic simulation of accelerograms for nuclear power plants in the UK, Prog. Nucl. Energy 91 (2016) 373-388. https://doi.org/10.1016/j.pnucene.2016.06.005
  25. D.D. Nguyen, B. Thusa, T.H. Lee, Effects of significant duration of ground motions on seismic responses of base-isolated nuclear power plants, J. Earthq. Eng.Soc.Korea 23 (3) (2019) 149-157. https://doi.org/10.5000/EESK.2019.23.3.149
  26. D. Van Nguyen, D. Kim, D.D. Nguyen, Nonlinear seismic soil-structure interaction analysis of nuclear reactor building considering the effect of earthquake frequency content, Structures 26 (2020) 901-914. https://doi.org/10.1016/j.istruc.2020.05.013
  27. D.D. Nguyen, B. Thusa, T.S. Han, T.H. Lee, Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures, Nucl. Eng. Technol. 52 (1) (2020) 192-205. https://doi.org/10.1016/j.net.2019.06.013
  28. D.D. Nguyen, B. Thusa, H. Park, M.S. Azad, T.H. Lee, Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building, Nucl. Eng. Technol. 53 (8) (2021) 2696-2707. https://doi.org/10.1016/j.net.2021.02.006
  29. S.C. Lee, K.B. Kipkorir, Y. Choi, H.B. Kim, C.H. Oh, N.B. Thanh, Effective prestress force considering instantaneous loss in reactor containment building, Int. J. Eng. Res. Dev. 12 (11) (2016) 18-23.
  30. S.M. Basha, R.K. Singh, R. Patnaik, S. Ramanujam, H.S. Kushwaha, V.V. Raj, Predictions of ultimate load capacity for pre-stressed concrete containment vessel model with BARC finite element code ULCA, Ann. Nucl. Energy 30 (4) (2003) 437-471. https://doi.org/10.1016/S0306-4549(02)00075-0
  31. H.T. Hu, Y.H. Lin, Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure, Int. J. Pres. Ves. Pip. 83 (3) (2006) 161-167. https://doi.org/10.1016/j.ijpvp.2006.02.030
  32. M.K. Chakraborty, S. Acharya, A.S. Pisharady, A.D. Roshan, L.R. Bishnoi, Assessment of Ultimate Load Capacity of concrete containment structures against structural collapse, Nucl. Eng. Des. 323 (2017) 417-426. https://doi.org/10.1016/j.nucengdes.2017.06.046
  33. I. Tavakkoli, M.R. Kianoush, H. Abrishami, X. Han, Finite element modelling of a nuclear containment structure subjected to high internal pressure, Int. J. Pres. Ves. Pip. 153 (2017) 59-69. https://doi.org/10.1016/j.ijpvp.2017.05.004
  34. J. Yan, Y. Lin, Z. Wang, T. Fang, J. Ma, Failure mechanism of a prestressed concrete containment vessel in nuclear power plant subjected to accident internal pressure, Ann. Nucl. Energy 133 (2019) 610-622. https://doi.org/10.1016/j.anucene.2019.07.013
  35. S.H. Rizkalla, S.H. Simmonds, J.G. MacGregor, Prestressed concrete containment model, J. Struct. Eng. 110 (4) (1984) 730-743. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:4(730)
  36. D. Twidale, R. Crowder, Sizewell 'B'-A one tenth scale containment model test for the UK PWR programme, Nucl. Eng. Des. 125 (1) (1991) 85-93. https://doi.org/10.1016/0029-5493(91)90008-6
  37. M.F. Hessheimer, S. Shibata, J.F. Costello, Functional and Structural Failure Mode Overpressurization Tests of 1: 4-Scale Prestressed Concrete Containment Vessel Model (H372), 2003.
  38. S. Kevorkian, G. Heinfling, A. Courtois, Prediction of a Containment Vessel Mock-Up Cracking during over Design Pressure Test, 2005.
  39. Sandia National Laboratories, Pretest round robin analysis of a prestressed concrete containment vessel model, in: U.S. Nuclear Regulatory Commission (NRC) and Nuclear Power Engineering Corporation (NUPEC), NUREG/CR-6678, 2000.
  40. K. Yonezawa, K. Imoto, Y. Watanabe, M. Akimoto, Ultimate capacity analysis of 1/4 PCCV model subjected to internal pressure, Nucl. Eng. Des. 212 (1-3) (2002) 357-379. https://doi.org/10.1016/S0029-5493(01)00498-8
  41. Young-Sun Choun, Junhee Park, Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement, Nucl. Eng. Technol. 47 (6) (2015) 756-765. https://doi.org/10.1016/j.net.2015.06.006
  42. Y.S. Choun, H.K. Park, Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement, Nucl. Eng. Technol. 47 (7) (2015) 884-894. https://doi.org/10.1016/j.net.2015.07.003
  43. ANSYS, Inc, ANSYS Mechanical APDL Element Reference, 2019.
  44. S.C. Lee, K.B. Kipkorir, Y. Choi, H.B. Kim, C.H. Oh, B.T. Nhu, Effective prestress force considering instantaneous loss in reactor containment building, Int. J. Eng. Res. Dev. 12 (11) (2016).
  45. C. Li, C. Zhai, S. Kunnath, D. Ji, Methodology for selection of the most damaging ground motions for nuclear power plant structures, Soil Dynam. Earthq. Eng. 116 (2019) 345-357. https://doi.org/10.1016/j.soildyn.2018.09.039
  46. H. Cho, H.M. Koh, C.H. Hyun, H.M. Shin, Seismic damage assessment of nuclear power plant containment structures, in: 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.