DOI QR코드

DOI QR Code

Internal Structure of the Health-Related Quality of Life Instrument with 8-Items in a Nationally Representative Population

한국형 건강 관련 삶의 질 측정도구(Health-Related Quality of Life Instrument with 8-Items)의 심리계량적 내적구조 평가: 국민건강영양조사 8기 1차년도 자료 적용

  • Received : 2023.01.06
  • Accepted : 2023.06.13
  • Published : 2023.06.30

Abstract

Purpose: This study evaluated the internal structure (structural validity, internal consistency, and measurement invariance) of the Health-Related Quality of Life Instrument with Eight Items (HINT-8), developed to measure Korean people's health-related quality of life. Methods: A secondary analysis was conducted using data from the Korea National Health and Nutrition Examination Survey, involving 6,167 adults aged over 18 years. The structural validity of the HINT-8 was assessed using exploratory graph analysis and confirmatory factor analysis. Internal consistency and measurement invariance were analyzed using McDonald's omega (ω) and multigroup confirmatory factor analysis, respectively. Results: The HINT-8 had a single dimension and good internal consistency (ω =.804). The one-dimension HINT-8 exhibited matric invariance but not scalar invariance across sociodemographic groups (sex, age, education, and marital status). Further, it exhibited scalar or partial scalar invariance across medical condition groups (hypertension, diabetes, depressive symptoms, and cancer). Conclusion: The study finds that the HINT-8 demonstrated satisfactory structural validity and internal consistency, indicating its suitability for practice and research. However, the HINT-8 scores cannot be compared across different groups regarding sex, age, education, and marital status, as the interpretation varies within each sociodemographic category. Conversely, interpretation of the HINT-8 is consistent for individuals with and without hypertension, diabetes, depressive symptom, and cancer.

Keywords

References

  1. Centers for Disease Control and Prevention (CDC). Health-related quality of life (HRQOL): HRQOL concepts [Internet]. Atlanta: CDC; 2018 [cited 2022 Dec 3]. Available from: https://www.cdc.gov/hrqol/concept.htm
  2. Fayers PM, Machin D. Quality of life: The assessment, analysis and interpretation of patient-reported outcomes. 2nd ed. Chichester: John Wiley & Sons; 2007. p. 1-566.
  3. Staquet MJ, Hays RD, Fayers PM. Quality of life assessment in clinical trials: Methods and practice. New York (NY): Oxford University Press; 1998. p. 1-360.
  4. Ware JE. SF-36 health survey: Manual and interpretation guide. Boston (MA): Health Institute, New England Medical Center; 1997. p. 1-300.
  5. EuroQol Group. EuroQol--a new facility for the measurement of health-related quality of life. Health Policy. 1990;16(3):199-208. https://doi.org/10.1016/0168-8510(90)90421-9
  6. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research. 2011;20(10):1727-1736. https://doi.org/10.1007/s11136-011-9903-x
  7. Jo MW. Development of measurement tool for health related quality of life in the Korea national health and nutrition examination survey [Internet]. Cheongju: Korea Disease Control and Prevention Agency; 2014 [cited 2022 Dec 3]. Available from: https://library.nih.go.kr/ncmiklib/archive/report/listRomsReport.do
  8. Jo MW. Valuation of Korean health-related quality of life instrument with 8 items (HINT-8). Cheongju: Korea Disease Control and Prevention Agency; 2017 Apr. Report No.: 11-1352159-000695-01.
  9. Ribeiro Santiago PH, Haag D, Macedo DM, Garvey G, Smith M, Canfell K, et al. Psychometric properties of the EQ-5D-5L for aboriginal Australians: A multi-method study. Health and Quality of Life Outcomes. 2021;19(1):81. https://doi.org/10.1186/s12955-021-01718-8
  10. Boczor S, Daubmann A, Eisele M, Blozik E, Scherer M. Quality of life assessment in patients with heart failure: Validity of the German version of the generic EQ-5D-5L™. BMC Public Health. 2019;19(1):1464. https://doi.org/10.1186/s12889-019-7623-2
  11. Zakershahrak M, Ribeiro Santiago PH, Sethi S, Haag D, Jamieson L, Brennan D. Psychometric properties of the EQ- 5D-3L in South Australia: A multi-method non-preference- based validation study. Current Medical Research and Opinion. 2022;38(5):673-685. https://doi.org/10.1080/03007995.2022.2031941
  12. Kim SH, Kim M. Validity of the health-related quality of life instrument with 8 items (HINT-8) in the Korean elderly: A cross-sectional study. Journal of Korean Gerontological Nursing. 2022;24(3):248-256. https://doi.org/10.17079/jkgn.2022.24.3.248
  13. Kim J, Jo MW, Lee HJ, Ahn SH, Son BH, Lee JW, et al. Validity and reliability of the health-related quality of life instrument with 8 items (HINT-8) in Korean breast cancer patients. Osong Public Health and Research Perspectives. 2021;12(4):254-263. https://doi.org/10.24171/j.phrp.2021.0005
  14. Kim J, Lee HJ, Jo MW. Health-related quality of life instrument with 8 items for use in patients with type 2 diabetes mellitus: A validation study in Korea. Journal of Preventive Medicine and Public Health. 2022;55(3):234-242. https://doi.org/10.3961/jpmph.22.020
  15. Furr RM. Psychometrics: An introduction. 3rd ed. Thousand Oaks (CA): Sage Publications; 2018. p. 1-568.
  16. Lee EK, Jung SY. Associated factors with health-related quality of life among older adults with diabetes in Korea. Korean Journal of Rehabilitation Nursing. 2022;25(2):61-69. https://doi.org/10.7587/kjrehn.2022.61
  17. Song HY, Jung GH. Factors Associated with the quality of life of obese adults: The 8th Korea national health and nutrition examination survey (2019). Journal of Korean Public Health Nursing. 2022;36(2):170-183. https://doi.org/10.5932/JKPHN.2022.36.2.170
  18. McDonald RP. Test theory: A unified treatment. Mahwah (NJ): Lawrence Erlbaum; 1999. p. 1-485.
  19. Korea Disease Control and Prevention Agency (KDCA). Korea health statistics 2020: Korea national health and nutrition examination survey (KNHANES VIII-2) [Internet]. Cheongju: KDCA; 2022 [cited 2022 Dec 9]. Available from: https://knhanes.kdca.go.kr/
  20. Megari K. Quality of life in chronic disease patients. Health Psychology Research. 2013;1(3):e27. https://doi.org/10.4081/hpr.2013.e27
  21. Golino HF, Epskamp S. Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PloS One. 2017;12(6):e0174035. https://doi.org/10.1371/journal.pone.0174035
  22. Golino H, Christensen AP. EGAnet: Exploratory graph analysis-a framework for estimating the number of dimensions in multivariate data using network psychometrics [computer Program]. Version. 1.2.0. 2022.
  23. Byrne BM. Structural equation modeling with AMOS: Basic concepts, applications, and programming. 3rd ed. New York (NY): Routledge; 2016. p. 1-438.
  24. Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal. 1999;6(1):1-55. https://doi.org/10.1080/10705519909540118
  25. MacCallum RC, Browne MW, Sugawara HM. Power analysis and determination of sample size for covariance structure modeling. Psychological Methods. 1996;1(2):130-149. https://doi.org/10.1037/1082-989X.1.2.130
  26. Widaman KF, Reise SP. Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. In: Bryant KJ, Windle M, West SG, editors. The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research. Washington, DC: American Psychological Association; 1997. p. 281-324.
  27. Chen YJ, Tang TLP. Attitude toward and propensity to engage in unethical behavior: Measurement invariance across major among university students. Journal of Business Ethics. 2006;69(1):77-93. https://doi.org/10.1007/s10551-006-9069-6
  28. Chen FF. Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal. 2007;14(3):464-504. https://doi.org/10.1080/10705510701301834
  29. Christensen AP, Golino H. Estimating the stability of psychological dimensions via bootstrap exploratory graph analysis: A Monte Carlo simulation and tutorial. Psych. 2021;3(3):479-500. https://doi.org/10.3390/psych3030032
  30. Steenkamp JE, Baumgartner H. Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research. 1998;25(1):78-90. https://doi.org/10.1086/209528
  31. Lee EH, Lee YW, Lee KW, Kim DJ, Kim SK. Development and psychometric evaluation of a diabetes-specific quality- of-life (D-QOL) scale. Diabetes Research and Clinical Practice. 2012;95(1):76-84. https://doi.org/10.1016/j.diabres.2011.08.022
  32. Ryan RM, Frederick C. On energy, personality, and health: Subjective vitality as a dynamic reflection of well-being. Journal of Personality. 1997;65(3):529-565. https://doi.org/10.1111/j.1467-6494.1997.tb00326.x
  33. Jung HS, Kwon J, Jeong S, Kim S. A comprehensive study of happiness and quality of life in Korea. Sejong: Korea Institute for Health and Social Affairs; 2019 Dec. Report No.: 19-52-01.
  34. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. Journal of Clinical Epidemiology. 2010;63(7):737-745. https://doi.org/10.1016/j.jclinepi.2010.02.006
  35. Prinsen CAC, Mokkink LB, Bouter LM, Alonso J, Patrick DL, de Vet HCW, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Quality of Life Research. 2018;27(5):1147-1157. https://doi.org/10.1007/s11136-018-1798-3