DOI QR코드

DOI QR Code

Fabry disease: current treatment and future perspective

  • Han-Wook Yoo (Department of Pediatrics, Center for Genomic Medicine, Bundang CHA Medical Center, CHA University School of Medicine)
  • Received : 2023.05.08
  • Accepted : 2023.05.18
  • Published : 2023.06.30

Abstract

Fabry disease (FD), a rare X-linked lysosomal storage disorder, is caused by mutations in the α-galactosidase A gene gene encoding α-galactosidase A (α-Gal A). The functional deficiency of α-Gal A results in progressive accumulation of neutral glycosphingolipids, causing multi-organ damages including cardiac, renal, cerebrovascular systems. The current treatment is comprised of enzyme replacement therapy (ERT), oral pharmacological chaperone therapy and adjunctive supportive therapy. ERT has been introduced 20 years ago, changing the outcome of FD patients with proven effectiveness. However, FD patients have many unmet needs. ERT needs a life-long intravenous therapy, inefficient bio-distribution, and generation of anti-drug antibodies. Migalastat, a pharmacological chaperone, augmenting α-Gal A enzyme activity only in patients with mutations amenable to the therapy, is now available for clinical practice. Furthermore, these therapies should be initiated before the organ damage becomes irreversible. Development of novel drugs aim at improving the clinical effectiveness and convenience of therapy. Clinical trial of next generation ERT is underway. Polyethylene glycolylated enzyme has a longer half-life and potentially reduced antigenicity, compared with standard preparations with longer dosing interval. Moss-derived enzyme has a higher affinity for mannose receptors, and seems to have more efficient access to podocytes of kidney which is relatively resistant to reach by conventional ERT. Substrate reduction therapy is currently under clinical trial. Gene therapy has now been started in several clinical trials using in vivo and ex vivo technologies. Early results are emerging. Other strategic approaches at preclinical research level are stem cell-based therapy with genome editing and systemic mRNA therapy.

Keywords

References

  1. Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina A, et al. Fabry disease revisited: management and treatment recommendations for adult patients. Mol Genet Metab 2018;123:416-27. https://doi.org/10.1016/j.ymgme.2018.02.014
  2. Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, et al. High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 2006;79:31-40. https://doi.org/10.1086/504601
  3. Matern D, Gavrilov D, Oglesbee D, Raymond K, Rinaldo P, Tortorelli S. Newborn screening for lysosomal storage disorders. Semin Perinatol 2015;39:206-16. https://doi.org/10.1053/j.semperi.2015.03.005
  4. Doheny D, Srinivasan R, Pagant S, Chen B, Yasuda M, Desnick RJ. Fabry disease: prevalence of affected males and heterozygotes with pathogenic GLA mutations identified by screening renal, cardiac and stroke clinics, 1995-2017. J Med Genet 2018;55:261-8. https://doi.org/10.1136/jmedgenet-2017-105080
  5. Rombach SM, Smid BE, Linthorst GE, Dijkgraaf MG, Hollak CE. Natural course of Fabry disease and the effectiveness of enzyme replacement therapy: a systematic review and meta-analysis: effectiveness of ERT in different disease stages. J Inherit Metab Dis 2014;37:341-52. https://doi.org/10.1007/s10545-014-9677-8
  6. Ries M, Gupta S, Moore DF, Sachdev V, Quirk JM, Murray GJ, et al. Pediatric Fabry disease. Pediatrics 2005;115:e344-55. https://doi.org/10.1542/peds.2004-1678
  7. Wang RY, Lelis A, Mirocha J, Wilcox WR. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet Med 2007;9:34-45. https://doi.org/10.1097/GIM.0b013e31802d8321
  8. Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, FeldtRasmussen U, et al.; Fabry Registry. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 2008;93:112-28. https://doi.org/10.1016/j.ymgme.2007.09.013
  9. Laney DA, Peck DS, Atherton AM, Manwaring LP, Christensen KM, Shankar SP, et al. Fabry disease in infancy and early childhood: a systematic literature review. Genet Med 2015;17:323-30. https://doi.org/10.1038/gim.2014.120
  10. Germain DP. Fabry disease. Orphanet J Rare Dis 2010;5:30.
  11. Turkmen K, Baloglu I. Fabry disease: where are we now? Int Urol Nephrol 2020;52:2113-22. https://doi.org/10.1007/s11255-020-02546-3
  12. Hwang S, Lee BH, Kim WS, Kim DS, Cheon CK, Lee CH, et al. A phase II, multicenter, open-label trial to evaluate the safety and efficacy of ISU303 (Agalsidase beta) in patients with Fabry disease. Medicine (Baltimore) 2022;101:e30345.
  13. Simonetta I, Tuttolomondo A, Daidone M, Miceli S, Pinto A. Treatment of Anderson-Fabry disease. Curr Pharm Des 2020;26:5089-99. https://doi.org/10.2174/1381612826666200317142412
  14. Beck M, Ramaswami U, Hernberg-Stahl E, Hughes DA, Kampmann C, Mehta AB, et al. Twenty years of the Fabry Outcome Survey (FOS): insights, achievements, and lessons learned from a global patient registry. Orphanet J Rare Dis 2022;17:238.
  15. Lee CL, Lin SP, Niu DM, Lin HY. Fabry disease and the effectiveness of enzyme replacement therapy (ERT) in left ventricular hypertrophy (LVH) improvement: a review and meta-analysis. Int J Med Sci 2022;19:126-31. https://doi.org/10.7150/ijms.66448
  16. Ramaswami U, Beck M, Hughes D, Kampmann C, Botha J, PintosMorell G, et al.; FOS Study Group. Cardio- renal outcomes with longterm agalsidase alfa enzyme replacement therapy: a 10- year Fabry Outcome Survey (FOS) analysis. Drug Des Devel Ther 2019;13:3705-15. https://doi.org/10.2147/DDDT.S207856
  17. Sheng S, Wu L, Nalleballe K, Sharma R, Brown A, Ranabothu S, et al. Fabry's disease and stroke: Effectiveness of enzyme replacement therapy (ERT) in stroke prevention, a review with meta-analysis. J Clin Neurosci 2019;65:83-6. https://doi.org/10.1016/j.jocn.2019.03.064
  18. Sasa H, Nagao M, Kino K. Safety and effectiveness of enzyme replacement therapy with agalsidase alfa in patients with Fabry disease: post-marketing surveillance in Japan. Mol Genet Metab 2019;126:448-59. https://doi.org/10.1016/j.ymgme.2019.02.005
  19. Ortiz A, Kanters S, Hamed A, DasMahapatra P, Poggio E, Maski M, et al. Agalsidase beta treatment slows estimated glomerular filtration rate loss in classic Fabry disease patients: results from an individual patient data meta-analysis. Clin Kidney J 2020;14:1136-46. https://doi.org/10.1093/ckj/sfaa065
  20. Banikazemi M, Bultas J, Waldek S, Wilcox WR, Whitley CB, McDonald M, et al.; Fabry Disease Clinical Trial Study Group. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 2007;146:77-86. https://doi.org/10.7326/0003-4819-146-2-200701160-00148
  21. Tondel C, Thurberg BL, DasMahapatra P, Lyn N, Maski M, Batista JL, et al. Clinical relevance of globotriaosylceramide accumulation in Fabry disease and the effect of agalsidase beta in affected tissues. Mol Genet Metab 2022;137:328-41. https://doi.org/10.1016/j.ymgme.2022.10.005
  22. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al.; International Collaborative Fabry Disease Study Group. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry's disease. N Engl J Med 2001;345:9-16. https://doi.org/10.1056/NEJM200107053450102
  23. Schiffmann R, Kopp JB, Austin HA 3rd, Sabnis S, Moore DF, Weibel T, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 2001;285:2743-9. https://doi.org/10.1001/jama.285.21.2743
  24. El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A, Barreto F. Enzyme replacement therapy for Anderson-Fabry disease: a complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS One 2017;12:e0173358.
  25. Riccio E, Pisani A. New insights in efficacy of different enzyme replacement therapy dosages in Fabry disease: switch studies data following agalsidase beta shortage. Clin Genet 2023;103:371-6. https://doi.org/10.1111/cge.14266
  26. Arends M, Biegstraaten M, Wanner C, Sirrs S, Mehta A, Elliott PM, et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international cohort study. J Med Genet 2018;55:351-8. https://doi.org/10.1136/jmedgenet-2017-104863
  27. Germain DP, Altarescu G, Barriales-Villa R, Mignani R, Pawlaczyk K, Pieruzzi F, et al. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Mol Genet Metab 2022;137:49-61. https://doi.org/10.1016/j.ymgme.2022.07.010
  28. Lenders M, Brand E. Fabry disease: the current treatment landscape. Drugs 2021;81:635-45. https://doi.org/10.1007/s40265-021-01486-1
  29. Simonetta I, Tuttolomondo A, Daidone M, Pinto A. Biomarkers in Anderson-Fabry disease. Int J Mol Sci 2020;21:8080.
  30. Spada M, Baron R, Elliott PM, Falissard B, Hilz MJ, Monserrat L, et al. The effect of enzyme replacement therapy on clinical outcomes in paediatric patients with Fabry disease - a systematic literature review by a European panel of experts. Mol Genet Metab 2019;126:212-23. https://doi.org/10.1016/j.ymgme.2018.04.007
  31. Biegstraaten M, Arngrimsson R, Barbey F, Boks L, Cecchi F, Deegan PB, et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis 2015;10:36.
  32. Feriozzi S, Hughes DA. New drugs for the treatment of AndersonFabry disease. J Nephrol 2021;34:221-30. https://doi.org/10.1007/s40620-020-00721-4
  33. Oder D, Muntze J, Nordbeck P. Contemporary therapeutics and new drug developments for treatment of Fabry disease: a narrative review. Cardiovasc Diagn Ther 2021;11:683-95. https://doi.org/10.21037/cdt-20-743
  34. Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, et al. Treatment of Fabry's disease with the pharmacologic chaperone migalastat. N Engl J Med 2016;375:545-55. https://doi.org/10.1056/NEJMoa1510198
  35. Feldt-Rasmussen U, Hughes D, Sunder-Plassmann G, Shankar S, Nedd K, Olivotto I, et al. Long-term efficacy and safety of migalastat treatment in Fabry disease: 30-month results from the open-label extension of the randomized, phase 3 ATTRACT study. Mol Genet Metab 2020;131:219-28. https://doi.org/10.1016/j.ymgme.2020.07.007
  36. Lenders M, Pollmann S, Terlinden M, Brand E. Pre-existing anti-drug antibodies in Fabry disease show less affinity for pegunigalsidase alfa. Mol Ther Methods Clin Dev 2022;26:323-30. https://doi.org/10.1016/j.omtm.2022.07.009
  37. van der Veen SJ, Hollak CEM, van Kuilenburg ABP, Langeveld M. Developments in the treatment of Fabry disease. J Inherit Metab Dis 2020;43:908-21. https://doi.org/10.1002/jimd.12228
  38. Peterschmitt MJ, Crawford NPS, Gaemers SJM, Ji AJ, Sharma J, Pham TT. Pharmacokinetics, pharmacodynamics, safety, and tolerability of oral venglustat in healthy volunteers. Clin Pharmacol Drug Dev 2021;10:86-98. https://doi.org/10.1002/cpdd.865
  39. Deegan PB, Goker-Alpan O, Geberhiwot T, Hopkin RJ, Lukina E, TylkiSzymanska A, et al. Venglustat, an orally administered glucosylceramide synthase inhibitor: assessment over 3 years in adult males with classic Fabry disease in an open-label phase 2 study and its extension study. Mol Genet Metab 2023;138:106963.
  40. Saleh AH, Rothe M, Barber DL, McKillop WM, Fraser G, Morel CF, et al. Persistent hematopoietic polyclonality after lentivirus-mediated gene therapy for Fabry disease. Mol Ther Methods Clin Dev 2023;28:262-71. https://doi.org/10.1016/j.omtm.2023.01.003
  41. Shaimardanova AA, Solovyeva VV, Issa SS, Rizvanov AA. Gene therapy of sphingolipid metabolic disorders. Int J Mol Sci 2023;24:3627.
  42. Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: progress, challenges, and outlooks on gene-editing. Mol Genet Metab 2021;134:117-31. Erratum in: Mol Genet Metab 2023;139:107541.
  43. Simonetta I, Tuttolomondo A, Di Chiara T, Miceli S, Vogiatzis D, Corpora F, et al. Genetics and gene therapy of Anderson-Fabry disease. Curr Gene Ther 2018;18:96-106. https://doi.org/10.2174/1566523218666180404161315
  44. Choi JB, Seo D, Do HS, Han YM. Generation of a CRISPR/Cas9- corrected-hiPSC line (DDLABi001-A) from Fabry disease (FD)-derived iPSCs having α-galactosidase (GLA) gene mutation (c.803_806del). Stem Cell Res 2023;66:103001.
  45. Felis A, Whitlow M, Kraus A, Warnock DG, Wallace E. Current and investigational therapeutics for Fabry disease. Kidney Int Rep 2019;5:407-13. https://doi.org/10.1016/j.ekir.2019.11.013
  46. Zhu X, Yin L, Theisen M, Zhuo J, Siddiqui S, Levy B, et al. Systemic mRNA therapy for the treatment of Fabry disease: preclinical studies in wild-type mice, Fabry mouse model, and wild-type non-human primates. Am J Hum Genet 2019;104:625-37. https://doi.org/10.1016/j.ajhg.2019.02.003