DOI QR코드

DOI QR Code

Distribution Characteristics and Source Estimation of Volatile Organic Compounds in the Ambient Air of Industrial Complex in Gwangju

광주지역 산업단지 대기 중 휘발성유기화합물 분포 특성 및 배출원 추정

  • Min-Jin Kim (Health & Environment Research Institute of Gwangju) ;
  • Ok-Hyun Park (Health & Environment Research Institute of Gwangju) ;
  • Yoon-Cheol Yang (Health & Environment Research Institute of Gwangju) ;
  • Jin-Hwan Park (Health & Environment Research Institute of Gwangju) ;
  • Ji-Yong Yu (Health & Environment Research Institute of Gwangju) ;
  • Hee-Yun Jung (Health & Environment Research Institute of Gwangju) ;
  • Gwang-Yeob Seo (Health & Environment Research Institute of Gwangju) ;
  • Jong-Min Kim (Health & Environment Research Institute of Gwangju)
  • 김민진 (광주광역시보건환경연구원) ;
  • 박옥현 (광주광역시보건환경연구원) ;
  • 양윤철 (광주광역시보건환경연구원) ;
  • 박진환 (광주광역시보건환경연구원) ;
  • 유지용 (광주광역시보건환경연구원) ;
  • 정희윤 (광주광역시보건환경연구원) ;
  • 서광엽 (광주광역시보건환경연구원) ;
  • 김종민 (광주광역시보건환경연구원)
  • Received : 2023.02.28
  • Accepted : 2023.05.26
  • Published : 2023.06.30

Abstract

In this study, we investigated the characteristics of Volatile Organic Compounds(VOCs) emission from painting and printing facilities in the Pyeongdong industrial complex in Gwangju. In addition, the objective was to understand the distribution characteristics of VOCs in the ambient air in industrial complexes affected by painting and printing facilities. The painting facility mainly emitted toluene, acetone, butyl acetate, 4-methyl-2-pentanone, ethyl acetate, 1-butanol, methyl ethyl ketone, m,p-xylene, o-xylene, 4-ethyltoluene, ethylbenzene, 3-ethyltoluene, and 1,2,4-trimethylbenzene. The main emission components in printing facilities were methyl ketone, ethyl acetate, acetone, 2-propanol, toluene, heptane, and butyl acetate. Ethyl acetate, toluene, 2-butanone, acetone, butyl acetate, 2-propanol, xylenes, and 4-methyl-2-pentanone were detected in the ambient air of the Pyeongdong industrial complex, consistent with the VOCs emitted by painting and printing facilities. The average concentration of seasonal TVOCs followed an order of winter > fall > spring > summer, whereas the concentrations of daytime and nighttime TVOCs were generally higher at night than those during the day, and the wind speed was greater during the day than it was at night. Based on a factor analysis of VOCs in the ambient air of Pyeongdong industrial complex, it is considered that organic solvents used in coating, printing, and electronics manufacturing facilities, as well as diesel vehicle emissions played a major role.

Keywords

Acknowledgement

본 연구는 2022년 환경부 "환경분야 시험검사의 국제적 적합성 기반구축사업"과 광주광역시보건환경연구원 "연구지원 및 역량강화" 사업의 지원으로 수행하였습니다.

References

  1. Baek, S. O., Kim, M. H., Seo, Y. K., 2003, Evaluation of fugitive emission characteristics of airborne Volatile Organic Compounds from different source categories, J. Kor. Soc. Atmos. Environ., 19(4), 363-376.
  2. Baek, S. O., Kim, S. H., Kim, M. H., 2005, Characterization of atmospheric concentrations of Volatile Organic Compounds in industrial areas of Pohang and Gumi cities, J. Environ. Toxicol., 20(2), 167-178.
  3. Baek, S. O., Seo, Y. K., Kim, J. H., 2020, Occurrence and distributions of Volatile Organic Compounds in the ambient air of large petro-chemical industrial complexes: Focusing on Daesan area, J. Kor. Soc. Atmos. Environ., 36(1), 32-47. https://doi.org/10.5572/KOSAE.2020.36.1.032
  4. Chae, J. S., Jeon, J. M., Lee, T. J., Jo, Y. M., 2019, Emission listing of Volatile Organic Compounds (VOCs) containing ozone precursors from emission sources in printing industries, J. Odor Indoor Environ., 18(2), 156-166. https://doi.org/10.15250/joie.2019.18.2.156
  5. Cheong, J. P., You, S. J., 2011, Characteristics and identification of ambient VOCs sources in Busan industrial area, J. Korean Soc. Environ. Eng., 33(9), 644-655. https://doi.org/10.4491/KSEE.2011.33.9.644
  6. Choi, S. W., Park, S. W., Lee, C. S., Kim, H. J., Bae, S., Inyang, H. I., 2009, Patterns of VOCs and BTEX concentration in the ambient air around industrial sources in Daegu, Korea, J. Environ. Sci. Heal. A., 44, 99-107. https://doi.org/10.1080/10934520802515434
  7. Choi, S. W., Park, S. W., Cha, Y. W., Yoo, E. C., 2021, The characteristics of air pollutants distribution around industrial complexes using real-time mobile atmospheric measurement system, J. Korean Soc. Environ. Eng., 43(6), 476-489. https://doi.org/10.4491/KSEE.2021.43.6.476
  8. Chun, H. J., Song, J. H., Park, J. H., Choi, W. S., Lee, K. Y., Song, M. Y., 2021, Characteristics of the VOCs emitted from automotive painting workshop and control facilities, J. Odor Indoor Environ., 20(1), 39-50. https://doi.org/10.15250/joie.2021.20.1.39
  9. Han, J. S., Lee, M. D., Lim, Y. J., Lee, S. U., Kim, Y. M., Gong, B. J., An, J. Y., Hong, Y. D., 2006, Study on the distributions of VOCs, Aldehydes, PAHs concentration in Seoul metropolitan area, J. Kor. Soc. Atmos. Environ., 22(5), 574-589.
  10. Jeong, J. H., Kim, I. S., Oh, E. H., Lee, J. R., Kim, H. S., 2022, A Study on the distribution of air pollutants in petrochemical industrial complex on summer, J. Korean Soc. Environ. Eng., 44(5), 161-174. https://doi.org/10.4491/KSEE.2022.44.5.161
  11. Kim, K. R., Lee, J. Y., Lee, C. M., Park, M. K., Kwon, S. M., Sin, J. H., Eo, S. M., Shin, Y. S., Cho, M. S., Kim, J. W., Kim, J. H., Lee, Y. K., 2020, Characteristics of VOCs and carbonyl compounds concentration in indoor air of small scale printing facilities, J. Odor Indoor Environ., 19(3), 278-289. https://doi.org/10.15250/joie.2020.19.3.278
  12. Kim, M. H., Park, D. G., Baek, S. O., 2002, Characteristics of atmospheric concentration of Volatile Organic Compounds at a heavy-traffic site in a large urban area, J. Kor. Soc. Atmos. Environ., 18(2), 113-126.
  13. Kim, Y. M., Kim, H. W., 2009, The assessment of health risk and subjective symptoms of printing workers exposed to mixed organic solvents, J. Korean Soc. Occup. Environ. Hyg., 19(3), 270-279.
  14. Kim, B. R., 2011, VOC Emissions from Automotive Painting and Their Cotrol: A Review, Environ. Eng. Res., 16(1), 1-9. https://doi.org/10.4491/eer.2011.16.1.001
  15. Kim, D. G., Song, I. S., Woo, J. S., Bae, Y. S., Lee, Y. K., Park, I. B., Han, H. S., Kim, Y. J., Kim, J. S., 2018, Concentration distribution of toxic volatile organic hydrocarbons in Gyeonggi-do's atmosphere, J. Korean Soc. Environ. Anal., 21(1), 11-23.
  16. Kim, D. G., Woo, J. S., Han, H. S., Kim, Y. J., Kim, W. S., Hong, S. M., Kim, J. S., Yoon, M. H., 2020, Distribution characteristics of Volatile Organic Compounds (VOCs) in an industrial complex and in affected areas in Siheung and Ansan, J. Environ. Health Sci., 46(3), 255-266.
  17. Kim, J. B., Park, D. S., Park, S. C., Michael, V., Lee, Y. G., Lee, S. S., Park, J. S., Kim, J. H., 2019, Concentration characteristics of particulate matter and Volatile Organic Compounds in petrochemical industrial complex using real-time monitoring devices, J. Korean Soc. Environ. Eng., 35(6), 683-700. https://doi.org/10.5572/KOSAE.2019.35.6.683
  18. Kim, S. H., Seo, D. J., Kim, H. R., Park, J. H., Lee, K. W., Bae, S. J., Song, H. M., 2020, Estimation and analysis of VOCs emissions from painting and printing facilities in industrial complexes of Gwangju, J. Env. Sci. Intern., 29(5), 479-494. https://doi.org/10.5322/JESI.2020.29.5.479
  19. Kim, S. Y., Han, J. S., Kim, H. K., 2001, A Study on the source profile of Volatile Organic Compounds from major emission sources, J. Kor. Soc. Atmos. Environ., 17(3), 233-240.
  20. Lee, T. J., Lee, S. M., Chae, J. S., Jeon, J. M., Kim, D. S., Jo, Y. M., 2021, Inventory of ozone precursor VOCs from organic solvents used in residential workplaces and assessment of ozone formation contribution, J. Kor. Soc. Atmos. Environ., 37(1), 102-112. https://doi.org/10.5572/KOSAE.2021.37.1.102
  21. Lee, Y. Y., Lee, S. W., Hwang, S. C., Kang, S. K., Lee, I. S., Jeon, J. M., Hong, S. O., Cho, K. S., 2021, Emission characteristics of particulate matter and Volatile Organic Compounds (VOCs) from a motor vehicle painting booth and ozone production contribution evaluation, J. Odor Indoor Environ., 20(1), 28-38. https://doi.org/10.15250/joie.2021.20.1.28
  22. Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., Tang, D., 2008, Source profiles of Volatile Organic Compounds(VOCs) measured in China: Part I, Atmos. Environ., 42, 6247-6260. https://doi.org/10.1016/j.atmosenv.2008.01.070
  23. National Air Emission Inventory and Research Center(NAIR), 2022, National Air Pollutants Emission 2019.
  24. Ojala, S., Pitkaaho, S., Laitinen, T., Koivikko, N. N., Brahmi, R., Gaalova, Matejova, L., Kucherov, A., Paivarinta, S., Hirschmann, C., Nevanpera, T., Riihimaki, M., Pirila, M., Keiski, R. L., 2011, Catalysis in VOC abatement, Top Catal., 54, 1224-1256. https://doi.org/10.1007/s11244-011-9747-1
  25. Park, J. H., Park, B. H., Kim, S. H., Yang, Y. C., Lee, K. W., Bae, S. J., Song, H. M., 2021, Estimation of contribution by pollutant source of VOCs in industrial complexes of Gwangju using receptor model (PMF), J. Env. Sci. Intern., 30(3), 219-234. https://doi.org/10.5322/JESI.2021.30.3.219
  26. Seo, Y. K., Chung, S. H., Baek, S. O., 2011, Current status and prospective of hazardous VOC in ambient air, J. Kor. Soc. Atmos. Environ., 27(6), 734-745. https://doi.org/10.5572/KOSAE.2011.27.6.734
  27. Shen, L., Xiang, P., Liang, S., Chen, W., Wang, M., Lu, S., Wang, Z., 2018, Sources profiles of Volatile Organic Compounds (VOCs) measured in a typical industrial process in Wuhan, Central China, Atmosphere, 9(8), 297-314. https://doi.org/10.3390/atmos9080297
  28. Shin, H. J., Kim, J. S., Kong, H. C., 2020, A Study on the odor and Volatile Organic Compound characteristics of chemical blocks in Sihwa industrial complex using a selected ion flow tube mass spectrometers, J. Odor Indoor Environ., 19(2), 177-185. https://doi.org/10.15250/joie.2020.19.2.177
  29. Song, B. J., Lee, S. M., Cho, G. J., Cho, J. G., You, P. J., Kim, G. G., 2012, VOC/HAPs emission characteristics & adsorption evaluation for paint products in Busan area, J. Korean Soc. Environ. Eng., 34(5), 316-325. https://doi.org/10.4491/KSEE.2012.34.5.316
  30. Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G., Xi, Y., 2018, Simultaneous removal of multicomponent VOCs in biofilters, Trends Biotechnol., 36(7), 673-685. https://doi.org/10.1016/j.tibtech.2018.02.004
  31. Yu, B. G., Tak, K. H., Lee, D. W., 2022, Characteristics of concentration distribution of volatile organic compounds in Ulsan using SIFT-MS, J. Korean Soc. Environ. Eng., 44(11), 406-417. https://doi.org/10.4491/KSEE.2022.44.11.406
  32. Zheng, J., Yu, Y., Mo, Z., Zhang, Z., Wang, X., Yin, S., Peng, K., Yang, Y., Feng, X., Cai, H., 2013, Industrial sector-based Volatile Organic Compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China, Sci. Total Environ., 456-457, 127-136. https://doi.org/10.1016/j.scitotenv.2013.03.055