DOI QR코드

DOI QR Code

Antioxidants as alleviating agents of in-vitro embryo production oxidative stress

  • Areeg Almubarak (Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Il-Jeoung Yu (Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Yubyeol Jeon (Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University)
  • 투고 : 2023.03.24
  • 심사 : 2023.05.11
  • 발행 : 2023.06.30

초록

Despite numerous advances in in-vitro embryo production (IVP), many documented factors have been shown to influence the development of mammalian preimplantation embryos and the success of IVP. In this sense, elevated levels of reactive oxygen species (ROS) correlate with poor outcomes in assisted reproductive technologies (ART) due to oxidative stress (OS), which results from an imbalance between ROS production and neutralization. Indeed, excessive production of ROS compromises the structural and functional integrity of gametes and embryos both in vivo and in vitro. In particular, OS damages proteins, lipids, and DNA and accelerates cell apoptosis. Several in-vivo and in-vitro studies report an improvement in qualityrelevant parameters after the use of various antioxidants. In this review, we focus on OS and the source of free radicals and their effects on oocytes, sperm, and the embryo during IVP. In addition, antioxidants and their important role in IVP, supplementation during oocyte in vitro maturation (IVM), in vitro culture (IVC), and semen extenders were discussed. Nevertheless, various methods for determining the level of ROS in germ cells have been briefly described. Still, it is crucial to develop standardized antioxidant supplement systems to improve overall IVP success. Further studies should explore the safety, efficacy, mechanism of action, and combination of different antioxidants to improve IVP outcomes.

키워드

과제정보

We wish to express our gratitude to Prof. Joohyeong Lee for his valuable comments. We also acknowledge Mr. Seongju Lee and Mrs. Rana Osman for technical support.

참고문헌

  1. Abdel-khalek AE, Dowidar YA, El-Nagar HA, Wafa WM, El-Ratel IT, Mousbah AM. 2022. A review on various antioxidants utilized in bovine semen extenders. J. Appl. Vet. Sci. 7:13-24.
  2. Agarwal A, Allamaneni SS, Said TM. 2004. Chemiluminescence technique for measuring reactive oxygen species. Reprod. Biomed. Online 9:466-468. https://doi.org/10.1016/S1472-6483(10)61284-9
  3. Agarwal A, Durairajanayagam D, du Plessis SS. 2014a. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod. Biol. Endocrinol. 12:112.
  4. Agarwal A, Gupta S, Sharma RK. 2005. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 3:28.
  5. Agarwal A, Maldonado Rosas I, Anagnostopoulou C, Cannarella R, Boitrelle F, Munoz LV, Finelli R, Durairajanayagam D, Henkel R, Saleh R. 2022. Oxidative stress and assisted reproduction: a comprehensive review of its pathophysiological role and strategies for optimizing embryo culture environment. Antioxidants (Basel) 11:477.
  6. Agarwal A, Virk G, Ong C, du Plessis SS. 2014b. Effect of oxidative stress on male reproduction. World J. Mens Health 32:1-17. https://doi.org/10.5534/wjmh.2014.32.1.1
  7. Agarwal A and Allamaneni SS. 2004. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod. Biomed. Online 9:338-347. https://doi.org/10.1016/S1472-6483(10)62151-7
  8. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. 2016. Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 28:1-10. https://doi.org/10.1071/RD15325
  9. Aitken RJ, Smith TB, Lord T, Kuczera L, Koppers AJ, Naumovski N, Connaughton H, Baker MA, De Iuliis GN. 2013. On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology 1:192-205. https://doi.org/10.1111/j.2047-2927.2012.00056.x
  10. Ali AA, Bilodeau JF, Sirard MA. 2003. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology 59:939-949. https://doi.org/10.1016/S0093-691X(02)01125-1
  11. Bansal AK and Bilaspuri GS. 2010. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int. 2010:686137.
  12. Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, ALSalamat HA, Bashatwah RM. 2018. Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian J. Med. 50:193-201. https://doi.org/10.5152/eurasianjmed.2018.17397
  13. Billari FC, Kohler HP, Andersson G, Lundstrom H. 2007. Approaching the limit: long-term trends in late and very late fertility. Popul. Dev. Rev. 33:149-170. https://doi.org/10.1111/j.1728-4457.2007.00162.x
  14. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. 2012. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5:9-19. https://doi.org/10.1097/WOX.0b013e3182439613
  15. Boquest AC, Abeydeera LR, Wang WH, Day BN. 1999. Effect of adding reduced glutathione during insemination on the development of porcine embryos in vitro. Theriogenology 51:1311-1319. https://doi.org/10.1016/S0093-691X(99)00075-8
  16. Cao Y, Zhao H, Wang Z, Zhang C, Bian Y, Liu X, Zhang C, Zhang X, Zhao Y. 2020. Quercetin promotes in vitro maturation of oocytes from humans and aged mice. Cell Death Dis. 11:965.
  17. Chambers GM, Dyer S, Zegers-Hochschild F, de Mouzon J, Ishihara O, Banker M, Mansour R, Kupka MS, Adamson GD. 2021. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology, 2014†. Hum. Reprod. 36:2921-2934. https://doi.org/10.1093/humrep/deab198
  18. Chen PR, Uh K, Redel BK, Reese ED, Prather RS, Lee K. 2022. Production of pigs from porcine embryos generated in vitro. Front. Anim. Sci. 3:826324.
  19. Ciani F, Maruccio L, Cocchia N, d'Angelo D, Carotenuto D, Avallone L, Namagerdi AA, Tafuri S. 2021. Antioxidants in assisted reproductive technologies: an overview on dog, cat, and horse. J. Adv. Vet. Anim. Res. 8:173-184. https://doi.org/10.5455/javar.2021.h500
  20. Correa GA, Rumpf R, Mundim TC, Franco MM, Dode MA. 2008. Oxygen tension during in vitro culture of bovine embryos: effect in production and expression of genes related to oxidative stress. Anim. Reprod. Sci. 104:132-142. https://doi.org/10.1016/j.anireprosci.2007.02.002
  21. De Felice F, Marchetti C, Di Pinto A, Musella A, Palaia I, Porpora MG, Muzii L, Tombolini V, Panici PB, Tomao F. 2018. Fertility preservation in gynaecologic cancers. Ecancermedicalscience 12:798.
  22. De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ. 2006. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J. Clin. Endocrinol. Metab. 91:1968-1975. https://doi.org/10.1210/jc.2005-2711
  23. Elomda AM, Saad MF, Saeed AM, Elsayed A, Abass AO, Safaa HM, Mehaisen GMK. 2018. Antioxidant and developmental capacity of retinol on the in vitro culture of rabbit embryos. Zygote 26:326-332. https://doi.org/10.1017/S0967199418000308
  24. Fisher HM and Aitken RJ. 1997. Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites. J. Exp. Zool. 277:390-400. https://doi.org/10.1002/(SICI)1097-010X(19970401)277:5<390::AID-JEZ5>3.0.CO;2-K
  25. Gadea J, Coy P, Matas C, Romar R, Canovas S. 2020. Reproductive technologies in swine. In: Presicce GA (Ed.), Reproductive Technologies in Animals, Academic Press, London, pp. 67-79.
  26. Galeati G, Bucci D, Nerozzi C, Gadani B, Tamanini C, Mislei B, Spinaci M. 2020. Improvement of in vitro fertilization by a tannin rich vegetal extract addition to frozen thawed boar sperm. Anim. Reprod. 17:e20190130.
  27. Gosalvez J, Tvrda E, Agarwal A. 2017. Free radical and superoxide reactivity detection in semen quality assessment: past, present, and future. J. Assist. Reprod. Genet. 34:697-707. https://doi.org/10.1007/s10815-017-0912-8
  28. Guerin P, El Mouatassim S, Menezo Y. 2001. Oxidative stress and protection against reactive oxygen species in the preimplantation embryo and its surroundings. Hum. Reprod. Update 7:175-189. https://doi.org/10.1093/humupd/7.2.175
  29. Halliwell B. 2007. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35(Pt 5):1147-1150. https://doi.org/10.1042/BST0351147
  30. Halliwell B and Gutteridge JM. 2015. Free Radicals in Biology and Medicine. 5th ed, Oxford University Press, Oxford, pp. 23-24.
  31. Herrick JR. 2019. Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 100:1158-1170. https://doi.org/10.1093/biolre/ioz025
  32. Hinrichs K. 2018. Assisted reproductive techniques in mares. Reprod. Domest. Anim. 53 Suppl 2:4-13. https://doi.org/10.1111/rda.13259
  33. Hu T, Zhu H, Sun W, Hao H, Zhao X, Du W, Wang Z. 2016. Sperm pretreatment with glutathione improves IVF embryos development through increasing the viability and antioxidative capacity of sex-sorted and unsorted bull semen. J. Integr. Agric. 15:2326-2335. https://doi.org/10.1016/S2095-3119(16)61402-8
  34. Javvaji PK, Dhali A, Francis JR, Kolte AP, Mech A, Roy SC, Mishra A, Bhatta R. 2020. An efficient nitroblue tetrazolium staining and bright-field microscopy based method for detecting and quantifying intracellular reactive oxygen species in oocytes, cumulus cells and embryos. Front. Cell Dev. Biol. 8:764.
  35. Jovicic M, Chmelikova E, Sedmikova M. 2020. Cryopreservation of boar semen. Czech J. Anim. Sci. 65:115-123. https://doi.org/10.17221/47/2020-CJAS
  36. Kang JT, Moon JH, Choi JY, Park SJ, Kim SJ, Saadeldin IM, Lee BC. 2016. Effect of antioxidant flavonoids (quercetin and taxifolin) on in vitro maturation of porcine oocytes. AsianAustralas. J. Anim. Sci. 29:352-358. https://doi.org/10.5713/ajas.15.0341
  37. Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT. 2007. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg. Med. Chem. 15:1749-1770. https://doi.org/10.1016/j.bmc.2006.11.037
  38. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62:1186-1197. https://doi.org/10.1016/j.theriogenology.2004.01.011
  39. Knox RV. 2015. The fertility of frozen boar sperm when used for artificial insemination. Reprod. Domest. Anim. 50 Suppl 2:90-97. https://doi.org/10.1111/rda.12552
  40. Kurkowska W, Bogacz A, Janiszewska M, Gabrys E, Tiszler M, Bellanti F, Kasperczyk S, Machon-Grecka A, Dobrakowski M, Kasperczyk A. 2020. Oxidative stress is associated with reduced sperm motility in normal semen. Am. J. Mens Health 14:1557988320939731.
  41. Marnett LJ. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424:83-95. https://doi.org/10.1016/S0027-5107(99)00010-X
  42. Morado SA, Cetica PD, Beconi MT, Dalvit GC. 2009. Reactive oxygen species in bovine oocyte maturation in vitro. Reprod. Fertil. Dev. 21:608-614. https://doi.org/10.1071/RD08198
  43. O'Neill HC, Nikoloska M, Ho H, Doshi A, Maalouf W. 2019. Improved cryopreservation of spermatozoa using vitrification: comparison of cryoprotectants and a novel device for longterm storage. J. Assist. Reprod. Genet. 36:1713-1720. https://doi.org/10.1007/s10815-019-01505-x
  44. Pierce JD, Cackler AB, Arnett MG. 2004. Why should you care about free radicals? RN 67:38-42; quiz 43.
  45. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. 2017. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. 2017:8416763.
  46. Rath D, Bathgate R, Rodriguez-Martinez H, Roca J, Strzezek J, Waberski D. 2009. Recent advances in boar semen cryopreservation. Soc. Reprod. Fertil. Suppl. 66:51-66.
  47. Redza-Dutordoir M and Averill-Bates DA. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863:2977-2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
  48. Robert KA, Sharma R, Henkel R, Agarwal A. 2021. An update on the techniques used to measure oxidative stress in seminal plasma. Andrologia 53:e13726.
  49. Roca J, Gil MA, Hernandez M, Parrilla I, Vazquez JM, Martinez EA. 2004. Survival and fertility of boar spermatozoa after freeze-thawing in extender supplemented with butylated hydroxytoluene. J. Androl. 25:397-405. https://doi.org/10.1002/j.1939-4640.2004.tb02806.x
  50. Scaravelli G and Spoletini R. 2015. The application of reproductive techniques (ART): worldwide epidemiology phenomenon and treatment outcomes. In: Watson RR (Ed.), Handbook of Fertility: Nutrition, Diet, Lifestyle and Reproductive Health, Academic Press, Amsterdam, pp. 75-87.
  51. Sciorio R and Smith GD. 2019. Embryo culture at a reduced oxygen concentration of 5%: a mini review. Zygote 27:355-361. https://doi.org/10.1017/S0967199419000522
  52. Sharma RK, Reynolds N, Rakhit M, Agarwal A. 2013. Methods for detection of ROS in the female reproductive system. In: Agarwal A, Aziz N, Rizk B (Eds.), Studies on Women's Health. Humana Press, Totowa, pp. 33-60.
  53. Sharma RK and Agarwal A. 2004. Role of reactive oxygen species in gynecologic diseases. Reprod. Med. Biol. 3:177-199. https://doi.org/10.1111/j.1447-0578.2004.00068.x
  54. Sovernigo TC, Adona PR, Monzani PS, Guemra S, Barros F, Lopes FG, Leal C. 2017. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod. Domest. Anim. 52:561-569. https://doi.org/10.1111/rda.12946
  55. Torres-Osorio V, Urrego R, Echeverri-Zuluaga JJ, Lopez-Herrera A. 2019. Oxidative stress and antioxidant use during in vitro mammal embryo production. Review. Rev. Mex. Cienc. Pecu. 10:433-459. https://doi.org/10.22319/rmcp.v10i2.4652
  56. Tunc O, Thompson J, Tremellen K. 2010. Development of the NBT assay as a marker of sperm oxidative stress. Int. J. Androl. 33:13-21. https://doi.org/10.1111/j.1365-2605.2008.00941.x
  57. Watson PF. 2000. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60-61:481-492. https://doi.org/10.1016/S0378-4320(00)00099-3
  58. Yang H, Kolben T, Meister S, Paul C, van Dorp J, Eren S, Kuhn C, Rahmeh M, Mahner S, Jeschke U, von Schonfeldt V. 2021. Factors influencing the in vitro maturation (IVM) of human oocyte. Biomedicines 9:1904.
  59. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. 1998. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13:998-1002. https://doi.org/10.1093/humrep/13.4.998
  60. Yeste M, Rodriguez-Gil JE, Bonet S. 2017. Artificial insemination with frozen-thawed boar sperm. Mol. Reprod. Dev. 84:802-813. https://doi.org/10.1002/mrd.22840
  61. Yuan YQ, Van Soom A, Coopman FO, Mintiens K, Boerjan ML, Van Zeveren A, de Kruif A, Peelman LJ. 2003. Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59:1585-1596. https://doi.org/10.1016/S0093-691X(02)01204-9
  62. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, Vanderpoel S. 2009. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil. Steril. 92:1520-1524. https://doi.org/10.1016/j.fertnstert.2009.09.009