DOI QR코드

DOI QR Code

The Importance of Early Chronic Obstructive Pulmonary Disease: A Lecture from 2022 Asian Pacific Society of Respirology

  • Don D. Sin (Center for Heart Lung Innovation, St. Paul's Hospital and Division of Respiratory Medicine, Department of Medicine, University of British Columbia Vancouver)
  • 투고 : 2023.01.04
  • 심사 : 2023.02.19
  • 발행 : 2023.04.30

초록

Chronic obstructive pulmonary disease (COPD) affects close to 400 million people worldwide. COPD is characterized by significant airflow limitation on spirometry. Most patients with COPD are diagnosed in their fifth or sixth decades of life. However, the disease begins much earlier. By the time airflow limitation is detected on spirometry, patients with COPD have lost close to 50% of their small airways. Thus, identification of patients with early COPD, defined as persons with preserved spirometry, who demonstrate pathologic or functional hallmarks of COPD, is essential for disease modification and ultimately disease elimination. This paper provides an up-to-date overview of the current case definition of early COPD, its importance, the novel technologies required for its detection in young adults and future directions in therapeutics for treatment.

키워드

참고문헌

  1. Adeloye D, Song P, Zhu Y, Campbell H, Sheikh A, Rudan I, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med 2022;10:447-58.  https://doi.org/10.1016/S2213-2600(21)00511-7
  2. Institute for Health Metrics and Evaluation. GBD compare: Viz Hub [Internet]. Seattle: IHME; 2019 [cited 2023 Feb 27]. Available from: https://vizhub.healthdata.org/gbd-compare/. 
  3. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396:1223-49.  https://doi.org/10.1016/S0140-6736(20)30752-2
  4. Stolz D, Mkorombindo T, Schumann DM, Agusti A, Ash SY, Bafadhel M, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 2022;400:921-72.  https://doi.org/10.1016/S0140-6736(22)01273-9
  5. Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med 2015;373:111-22.  https://doi.org/10.1056/NEJMoa1411532
  6. Agusti A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P, et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur Respir J 2023;3:2300239. 
  7. Soriano JB, Polverino F, Cosio BG. What is early COPD and why is it important? Eur Respir J 2018;52:1801448. 
  8. Martinez FJ, Agusti A, Celli BR, Han MK, Allinson JP, Bhatt SP, et al. Treatment trials in young patients with chronic obstructive pulmonary disease and pre-chronic obstructive pulmonary disease patients: time to move forward. Am J Respir Crit Care Med 2022;205:275-87.  https://doi.org/10.1164/rccm.202107-1663SO
  9. Kulkarni N, Pierse N, Rushton L, Grigg J. Carbon in airway macrophages and lung function in children. N Engl J Med 2006;355:21-30.  https://doi.org/10.1056/NEJMoa052972
  10. Bates DV, Hogg JC. Inhaled carbon and lung function in children. N Engl J Med 2006;355:1496. 
  11. Tan WC, Bourbeau J, Aaron SD, Hogg JC, Maltais F, Hernandez P, et al. The effects of marijuana smoking on lung function in older people. Eur Respir J 2019;54:1900826. 
  12. Tan WC, Lo C, Jong A, Xing L, Fitzgerald MJ, Vollmer WM, et al. Marijuana and chronic obstructive lung disease: a population-based study. CMAJ 2009;180:814-20.  https://doi.org/10.1503/cmaj.081040
  13. Ling SH, McDonough JE, Gosselink JV, Elliott WM, Hayashi S, Hogg JC, et al. Patterns of retention of particulate matter in lung tissues of patients with COPD: potential role in disease progression. Chest 2011;140:1540-9.  https://doi.org/10.1378/chest.10-2281
  14. Ural BB, Caron DP, Dogra P, Wells SB, Szabo PA, Granot T, et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med 2022;28:2622-32.  https://doi.org/10.1038/s41591-022-02073-x
  15. Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1: the Lung Health Study. JAMA 1994;272:1497-505.  https://doi.org/10.1001/jama.1994.03520190043033
  16. Koo HK, Vasilescu DM, Booth S, Hsieh A, Katsamenis OL, Fishbane N, et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir Med 2018;6:591-602.  https://doi.org/10.1016/S2213-2600(18)30196-6
  17. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004;364:709-21.  https://doi.org/10.1016/S0140-6736(04)16900-6
  18. Kwon DS, Choi YJ, Kim TH, Byun MK, Cho JH, Kim HJ, et al. FEF25-75% values in patients with normal lung function can predict the development of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2020;15:2913-21.  https://doi.org/10.2147/COPD.S261732
  19. Quanjer PH, Weiner DJ, Pretto JJ, Brazzale DJ, Boros PW. Measurement of FEF25-75% and FEF75% does not contribute to clinical decision making. Eur Respir J 2014;43:1051-8.  https://doi.org/10.1183/09031936.00128113
  20. King GG, Bates J, Berger KI, Calverley P, de Melo PL, Dellaca RL, et al. Technical standards for respiratory oscillometry. Eur Respir J 2020;55:1900753. 
  21. Kaminsky DA, Simpson SJ, Berger KI, Calverley P, de Melo PL, Dandurand R, et al. Clinical significance and applications of oscillometry. Eur Respir Rev 2022;31:210208. 
  22. Crim C, Celli B, Edwards LD, Wouters E, Coxson HO, Tal-Singer R, et al. Respiratory system impedance with impulse oscillometry in healthy and COPD subjects: ECLIPSE baseline results. Respir Med 2011;105:1069-78.  https://doi.org/10.1016/j.rmed.2011.01.010
  23. Jetmalani K, Thamrin C, Farah CS, Bertolin A, Chapman DG, Berend N, et al. Peripheral airway dysfunction and relationship with symptoms in smokers with preserved spirometry. Respirology 2018;23:512-8.  https://doi.org/10.1111/resp.13215
  24. Postma DS, Brightling C, Baldi S, Van den Berge M, Fabbri LM, Gagnatelli A, et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. Lancet Respir Med 2019;7:402-16.  https://doi.org/10.1016/S2213-2600(19)30049-9
  25. Kraft M, Richardson M, Hallmark B, Billheimer D, Van den Berge M, Fabbri LM, et al. The role of small airway dysfunction in asthma control and exacerbations: a longitudinal, observational analysis using data from the ATLANTIS study. Lancet Respir Med 2022;10:661-8.  https://doi.org/10.1016/S2213-2600(21)00536-1
  26. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J 2013;41:507-22.  https://doi.org/10.1183/09031936.00069712
  27. Olofson J, Bake B, Bergman B, Vanfleteren LE, Svardsudd K. Prediction of COPD by the single-breath nitrogen test and various respiratory symptoms. ERJ Open Res 2021;7:00383-2021.  https://doi.org/10.1183/23120541.00383-2021
  28. Olofsson J, Bake B, Svardsudd K, Skoogh BE. The single breath N2-test predicts the rate of decline in FEV1: the study of men born in 1913 and 1923. Eur J Respir Dis 1986;69:46-56. 
  29. Olofson J, Bake B, Bergman B, Svardsudd K. The single breath nitrogen test and mortality: a 38 years follow up. Respir Med 2016;112:75-80.  https://doi.org/10.1016/j.rmed.2016.01.002
  30. Pistelli F, Sherrill DL, Di Pede F, Baldacci S, Simoni M, Maio S, et al. Single breath nitrogen test as predictor of lung function decline and COPD over an 8-year follow-up. Pulmonology 2022 Oct 7 [Epub]. https://doi.org/10.1016/j.pulmoe.2022.09.001. 
  31. Buist AS, Vollmer WM, Johnson LR, McCamant LE. Does the single-breath N2 test identify the smoker who will develop chronic airflow limitation? Am Rev Respir Dis 1988;137:293-301.  https://doi.org/10.1164/ajrccm/137.2.293
  32. Elbehairy AF, Guenette JA, Faisal A, Ciavaglia CE, Webb KA, Jensen D, et al. Mechanisms of exertional dyspnoea in symptomatic smokers without COPD. Eur Respir J 2016;48:694-705.  https://doi.org/10.1183/13993003.00077-2016
  33. Washko GR, Parraga G. COPD biomarkers and phenotypes: opportunities for better outcomes with precision imaging. Eur Respir J 2018;52:1801570. 
  34. Yuan R, Hogg JC, Pare PD, Sin DD, Wong JC, Nakano Y, et al. Prediction of the rate of decline in FEV(1) in smokers using quantitative computed tomography. Thorax 2009;64:944-9.  https://doi.org/10.1136/thx.2008.112433
  35. Arjomandi M, Zeng S, Barjaktarevic I, Barr RG, Bleecker ER, Bowler RP, et al. Radiographic lung volumes predict progression to COPD in smokers with preserved spirometry in SPIROMICS. Eur Respir J 2019;541802214. 
  36. Kirby M, Tanabe N, Vasilescu DM, Cooper JD, McDonough JE, Verleden SE, et al. Computed tomography total airway count is associated with the number of micro-computed tomography terminal bronchioles. Am J Respir Crit Care Med 2020;201:613-5.  https://doi.org/10.1164/rccm.201910-1948LE
  37. Tang LY, Coxson HO, Lam S, Leipsic J, Tam RC, Sin DD. Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. Lancet Digit Health 2020;2:e259-67.  https://doi.org/10.1016/S2589-7500(20)30064-9
  38. Galban CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 2012;18:1711-5.  https://doi.org/10.1038/nm.2971
  39. Ruppert K, Qing K, Patrie JT, Altes TA, Mugler JP 3rd. Using hyperpolarized Xenon-129 MRI to quantify early-stage lung disease in smokers. Acad Radiol 2019;26:355-66.  https://doi.org/10.1016/j.acra.2018.11.005
  40. Baron RJ, Hamedani H, Kadlecek SJ, Duncan IF, Xin Y, Siddiqui S, et al. A model for predicting future FEV1 decline in smokers using hyperpolarized 3He magnetic resonance imaging. Acad Radiol 2019;26:383-94.  https://doi.org/10.1016/j.acra.2018.06.024
  41. Woodruff PG, Barr RG, Bleecker E, Christenson SA, Couper D, Curtis JL, et al. Clinical significance of symptoms in smokers with preserved pulmonary function. N Engl J Med 2016;374:1811-21.  https://doi.org/10.1056/NEJMoa1505971
  42. Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet 2006;367:1216-9.  https://doi.org/10.1016/S0140-6736(06)68516-4
  43. Han MK, Ye W, Wang D, White E, Arjomandi M, Barjaktarevic IZ, et al. Bronchodilators in tobacco-exposed persons with symptoms and preserved lung function. N Engl J Med 2022;387:1173-84.  https://doi.org/10.1056/NEJMoa2204752
  44. Sin DD. RETHINCking COPD: bronchodilators for symptomatic tobacco-exposed persons with preserved lung function? N Engl J Med 2022;387:1230-1.  https://doi.org/10.1056/NEJMe2210347
  45. Celli B, Fabbri L, Criner G, Martinez FJ, Mannino D, Vogelmeier C, et al. Definition and nomenclature of chronic obstructive pulmonary disease: time for its revision. Am J Respir Crit Care Med 2022;206:1317-25.  https://doi.org/10.1164/rccm.202204-0671PP
  46. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645-53.  https://doi.org/10.1056/NEJMoa032158
  47. Lung Health Study Research Group; Wise R, Connett J, Weinmann G, Scanlon P, Skeans M. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N Engl J Med 2000;343:1902-9.  https://doi.org/10.1056/NEJM200012283432601
  48. Soriano JB, Sin DD, Zhang X, Camp PG, Anderson JA, Anthonisen NR, et al. A pooled analysis of FEV1 decline in COPD patients randomized to inhaled corticosteroids or placebo. Chest 2007;131:682-9.  https://doi.org/10.1378/chest.06-1696
  49. McGarvey LP, Birring SS, Morice AH, Dicpinigaitis PV, Pavord ID, Schelfhout J, et al. Efficacy and safety of gefapixant, a P2X3 receptor antagonist, in refractory chronic cough and unexplained chronic cough (COUGH-1 and COUGH-2): results from two double-blind, randomised, parallel-group, placebo-controlled, phase 3 trials. Lancet 2022;399:909-23.  https://doi.org/10.1016/S0140-6736(21)02348-5
  50. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 2014;13:419-31. https://doi.org/10.1038/nrd4309