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Objective: Given the destructive effects of oxidative stress on sperm structure, this study was conducted to investigate the antioxidant ef-
fects of different concentrations of Ceratonia siliqua plant extract on human sperm parameters after the freezing-thawing process. 
Methods: A total of 20 normozoospermic samples were frozen. Each sample was divided into two control groups (fresh and cryopreserva-
tion) and three cryopreservation experimental groups (containing C. siliqua extract at concentrations of 20, 30, and 40 µg/mL in the freezing 
extender). Motility, intracellular levels of reactive oxygen species (ROS), plasma membrane integrity (PMI), mitochondrial membrane poten-
tial (MMP), viability, and acrosome reaction parameters were evaluated. 
Results: Statistical analysis showed that the highest motility, viability, and PMI were associated with the 20 µg/mL concentration of C. siliqua 
extract. At all concentrations, intracellular ROS levels were significantly lower and the levels of MMP and the acrosome reaction were signifi-
cantly higher than in the cryopreservation control group (p≤0.05). 
Conclusion: C. siliqua extract supplements at concentrations of 20, 30, and 40 µg/mL improved sperm motility, viability, PMI, MMP, intracel-
lular ROS, and the acrosome reaction. 
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Introduction 

Freezing human sperm is an effective and beneficial strategy in 
the field of male fertility [1]. This method can be used for men with 
cancer who are undergoing radiotherapy or chemotherapy treat-
ment, in sperm donation programs, or in conjunction with surgical 
procedures that endanger male fertility [2-5]. The use of cryopreser-
vation to create a sperm bank for healthy men who are exposed to 
ionizing radiation, biological contaminants, or toxins at work is an-

other related goal [6]. Despite these benefits of sperm cryopreserva-
tion, we now understand that cryopreservation and thawing cause 
irrecoverable changes in sperm function and structure [7]. In the 
cryopreservation process, sperm are exposed to stressors such as os-
motic pressure change, pH change, dehydration, the creation of ice 
crystals, and the generation of free radicals [8]. These factors can im-
pair sperm motility, cell membrane and mitochondrial structure, 
chromatin structure, and sperm viability [9]. In recent years, exten-
sive efforts have been made to improve cryopreservation and reduce 
the harmful effects of the freezing-thawing process on human sperm 
[10]. These include changes to cryopreservation methods, composi-
tion of the cryopreservation medium, cryopreservation and thawing 
times, and packaging of samples [11,12]. In general, freezing media 
include cryoprotectants, ionic or non-ionic materials to maintain the 
pH, and an energy substrate, as well as fatty acids, antibiotics, and 
antioxidants [11]. According to previous studies, the complementa-



tion of freezing-thawing environments with various factors, includ-
ing antioxidants, is an effective approach to improve the quality of 
frozen-thawed sperm [13]. Many studies have focused on plants with 
antioxidant capacities that can counteract the damaging effects of 
free radicals due to oxidative stress [14]. Ceratonia siliqua is an ever-
green plant native to the Mediterranean region. C. siliqua contains 
compounds such as vitamins (B, C, D, and E), polyphenols, and min-
erals (iron, phosphorus, potassium, sodium, and calcium) [15,16]. The 
phenolic components of this plant improve oxidative stress condi-
tions [17] and can act as a powerful source of antioxidants. As such, 
the use of phenolic antioxidants is recommended to improve oxida-
tive damage, with minimal side effects and ease of use [12,18]. For 
the first time, in the current study, we simultaneously evaluated the 
effects of C. siliqua extract on human sperm parameters including 
motility, viability, cell membrane and mitochondrial potential, intra-
cellular levels of reactive oxygen species (ROS), and the acrosome re-
action using computer-assisted sperm analysis, fluorescence, hy-
poosmotic swelling (HOS) testing, JC-1 staining, flow cytometry, and 
fluorescent thiocyanate, respectively. 

Methods 

1. Extraction 
1) Preparation of C. siliqua hydroalcoholic extract 

The C. siliqua plant was prepared by a medicinal plant expert from 
the local plant market and approved by a pharmacognosy expert. 
First, 100 g of fresh C. siliqua plant matter was dried at room tem-
perature and then ground in a blender, yielding a homogeneous 
powder. Then, 10 g of C. siliqua powder was mixed with 1,000 mL of 
96% ethanol (Merck). The resulting solution was added to distilled 
water in a 50:50 ratio and kept at room temperature for 72 hours. 
This extract was then filtered (filter paper no. 4; Whatman PLC). The 
filtered solution was concentrated at 50 °C using a rotary apparatus. 
Finally, a brown extract was obtained, dried in an oven at 40 °C, and 
kept at −20 °C until use [19]. 

2. Participation and semen collection 
Verbal informed consent was obtained from each patient for the 

use of their semen samples (IR.ACECR.HAMEDAN.1400.140) were ap-
proved by the ethics committee of the Hamadan Branch of Azad 
University. A total of 20 normal sperm samples from men referred to 
the Aban Infertility Center between April 29, 2021 and August 17, 
2021 were used. Samples were prepared during 3 to 5 days of absti-
nence. These normal samples had normal morphology ( > 4%), nor-
mal motility ( < 40%), and a concentration above 15 million/mL and 
were collected according to the 2010 World Health Organization 
guidelines.  

3. Sperm processing  
The swim-up method was used to process the semen samples 

[20]. In this method, the samples were first centrifuged for 5 minutes 
at 300 × g; then, the supernatant was removed, and the pellets were 
precipitated with preheated human tubal fluid (HTF) and 2.5% hu-
man serum albumin (HSA) (Vitrolife) [21]. These samples were 
poured into a Falcon tube and incubated at a 45° angle in an incuba-
tor (5% CO2, 37 °C) for 1 hour. The supernatant was poured into a mi-
crotube, analyzed, and then frozen by vitrification. 

4. Cryopreservation and thawing 
After the preparation of sperm, the samples were frozen via the 

microdroplet technique [22]. For the cryopreservation control group, 
the sperm solution and HTF were mixed with a solution containing 
5% HSA and 0.5 mol/L sucrose (Vitrolife) at a 1:1 ratio. C. siliqua ex-
tract was prepared at several concentrations (20, 30, and 40 µg/mL). 
For the cryopreservation experimental groups, the sperm solution 
was mixed with HSA and sucrose solution along with 20, 30, or 40 
µg/mL of C. siliqua extract. 

Droplets of 30 µL of the micropipette-prepared suspensions were 
poured into a metal strainer and placed in liquid nitrogen, and the 
frozen samples were kept in nitrogen storage tanks for 1 week [23]. 
For the thawing process, we first incubated the HTF medium for 2 
hours at 37 °C and then immersed the frozen samples in 5 mL of 
heated HTF supplemented with 1% HSA. 

Next, the sperm suspensions were incubated at 37 °C and 5% CO2 
for 5 minutes. Finally, the samples were centrifuged for 5 minutes at 
1,800 rpm, the pellets were resuspended in 50 µL HTF, and the sperm 
were evaluated [23]. 

5. Assessment of sperm parameters 
1) Motion characteristics 

A computer-aided sperm analyzer system (Sperm Class Analyzer 
version 6; Microptic) was used to assess motility and the motility in-
dices. In this study, 5-µL samples from each group were placed in a 
preheated Makler chamber (Proiser), and general motility, progres-
sive movement and motor indices, average path velocity (μm/sec), 
curvilinear velocity (μm/sec), straight-line velocity (μm/sec), mean 
linearity (μm/sec), straightness (μm/sec), amplitude of lateral head 
displacement (μm), and beat cross frequency (Hz) were assessed for 
500 sperm. 

2) Viability 
To assess sperm viability, a LIVE/DEAD sperm kit was used accord-

ing to the manufacturer’s instructions (L-7011; Molecular Probes). To 
accomplish this, 0.1 µL of SYBR14 working solution (containing 150 
mM sodium chloride, 10 mM HEPES, 10% bovine serum albumin, 
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and SYBR14) was added to 50 µL of sperm suspension. The resulting 
solution was incubated at 37 °C for 10 minutes. Then, 1 µL of propidi-
um iodide solution was added to the previous suspension and incu-
bated for another 5 minutes in an incubator at 37 °C, and 10 µL of 
Hancock solution was added to the solution to immobilize the 
sperm. Finally, to assess viability, 6 µL of this final suspension was 
placed on a glass slide, covered, and examined using a fluorescence 
microscope (CX21; Olympus; excitation at 450–490 nm, emission at 
520 nm) with a magnification of × 1,000. In this protocol, cells were 
stained with propidium iodide and SYBR14 on each slide. Dead and 
living spermatozoa were evaluated based on red and green color 
emissions, respectively. The LIVE/DEAD sperm ratio is depicted in 
Figures 1 and 2 [21].  

3) Plasma membrane integrity 
The HOS test was used to evaluate membrane integrity. We mixed 

10 µL of the sperm sample, 100 µL of HOS solution containing 0.73 g 
of sodium citrate and 1.35 g of fructose (Merck), and 100 mL of dis-
tilled water and incubated the mixture (5% CO2, 37 °C). Then, 15 µL 
of this solution was added to 5 µL of eosin Y solution (2%), and a 
smear was prepared from the resulting mixture on a glass slide. Fi-
nally, 200 sperm were assessed using a light microscope (ECLIPSE 

50i; Nikon) with a magnification of × 1,000. Coiled-tail sperm were 
considered to have intact plasma membranes (Figure 3) [24]. 

4) Mitochondrial activity 
JC-1 is a lipophilic cationic dye (T4069; Sigma-Aldrich) used to as-

Figure 1. This shows dead and live sperm based on the fluorescence 
emitted. Green sperm stained with SYBR14 are alive and orange 
sperm stained with propidium iodide are dead.
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Figure 2. The graph shows the ratio of live/death sperms in the 
control and experimental groups. The most positive effect on 
the ratio of live/death sperms is related to the group containing  
20 μg/mL cryopreservation supplement of siliqua extract. C. siliqua, 
Ceratonia siliqua.

Figure 3. This figure shows the integrity of the plasma membrane 
based on hypoosmotic swelling tests. Sperms with straight tails are 
considered dead and sperms with coiled tails are considered alive.
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sess sperm mitochondrial activity. For this assessment, sperm sam-
ples were centrifuged for 5 minutes at 500 × g, after which the pellet 
was diluted with phosphate-buffered saline. Then, 500 µL of this 
solution was mixed with 1 µL of JC-1 stock solution and incubated at 
37 °C for 40 minutes. Next, 10 µL of Hancock solution was added to 
the previous solution to immobilize the sperm. Finally, 2.5 µL of the 
prepared sample was placed on a glass slide, covered, and assessed 
under a BX51 fluorescence microscope (Olympus; excitation at 450–
490 nm, emission at 520 nm) at a magnification of × 1,000, under 
which 200 sperm per slide were examined. Sperm with yellow/or-
ange fluorescence at the midline were considered to display high 
mitochondrial activity, while sperm with green fluorescence were 
considered to exhibit low mitochondrial activity (Figure 4) [25]. 

5) Acrosome integrity 
To evaluate the integrity of the acrosome, fluorescein isothiocya-

nate-conjugated Pisum sativum agglutinin (FITC-PSA, L0770; Sig-
ma-Aldrich) was used. Initially, a 30-µL smear was prepared on a 
glass slide for each sample. After drying, the samples were fixed at 
room temperature with methanol for 30 minutes. Then, 50 µL of 

FITC-PSA solution was poured on each slide and incubated for 30 
minutes. Finally, the stained slides were washed with distilled water 
and were evaluated using a BX51 fluorescence microscope (Olym-
pus; excitation at 450–490 nm, emission at 520 nm) with a magnifi-
cation of × 1,000. For each slide, 200 sperm were examined. Sperm 
with bright green fluorescence in the acrosome area were identified 
as having intact acrosomes, while sperm with no green or pale green 
fluorescence near the equator were identified as acrosome-reacted 
(Figure 5) [21]. 

6) Intracellular ROS 
To assess intracellular ROS, sperm samples were first suspended 

after melting with phosphate-buffered saline. Then, 10 µL of dihy-
droethidium solution was added. The samples were incubated at 
room temperature for 30 minutes. For this measurement, flow cy-
tometry was used. Red fluorescence with an FL2 detector (525–625 
nm) was used to indicate intracellular ROS [26,27]. 

7) Flowcytometric analysis 
Flowcytometric analysis was conducted using Cyflogic version 

Figure 4. This figure shows the activity of sperm mitochondria. 
Sperms with yellow fluorescence in the midpiece region show high 
activity of the mitochondrial membrane and sperms with green 
fluorescence show low activity of the mitochondrial membrane.

10 µm

Figure 5. This figure shows the acrosome reaction based on the 
emission of different colors from the acrosome region using a 
fluorescence microscope. Sperms with clear green fluorescence as 
intact acrosomes and the sperms with pale green fluorescence were 
determined as acrosome reaction.

10 µm
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2.5.1 (CyFlo Ltd.). This analysis was performed using a FACSCalibur 
flow cytometer (BD Biosciences) and an argon laser with a wave-
length of 488 nm [28]. 

Results 

As shown in Table 1, when either 30 or 40 µg/mL of  C. siliqua ex-
tract was added to the sperm freezing extender, no significant differ-
ences in total or progressive motility were observed relative to the 
cryopreservation control group. In contrast, significantly greater mo-
tility was observed in the group treated with 20 µg/mL extract 
(p ≤ 0.05). No significant difference was observed in the other motili-
ty characteristics for any of the extract concentrations relative to the 
cryopreservation control group (Table 1). 

As shown in Table 2, the intracellular ROS level was significantly re-
duced among sperm treated with any concentration of C. siliqua ex-
tract relative to the cryopreservation control group (p ≤ 0.05). Addi-
tionally, by increasing the concentration of C. siliqua extract from 20 
µg/mL to 30 or 40 µg/mL, viability and plasma membrane integrity 
(PMI) were significantly improved in the cryopreservation experi-

mental groups relative to the cryopreservation control group. The 
greatest increase relative to the control was associated with the 20 
µg/mL extract concentration, and no significant difference was ob-
served between 30 and 40 µg/mL (p ≥ 0.05). Levels of both mito-
chondrial membrane potential (MMP) and the acrosome reaction 
showed a significant increase at all three concentrations compared 
to the cryopreservation control group. However, no significant differ-
ence was seen between the experimental groups (Table 2). 

Discussion 

Sperm cryopreservation can involve the formation of ice crystals, 
osmotic imbalance, and oxidative stress, potentially causing irrepara-
ble damage to the structure and ultimately the function of the cell 
[29]. One method to prevent the formation of ice crystals and the as-
sociated damage is cryopreservation by vitrification [30]. In this pro-
cess, sperm cryopreservation is performed more quickly and with 
greater safety than in other methods [31,32]. The cryopreservation 
process plays a role in the production of ROS by accelerating the con-
version of anion superoxide to hydrogen peroxide [33]. Although a 

Table 1. Effect of Ceratonia siliqua concentrations 20, 30, and 40 μg/mL added to cryopreservation/thawing media on motility parameters 
of human spermatozoa 

Groups Fresh-C Frozen-C C. siliqua 20 μg/mL C. siliqua 30 μg/mL C. siliqua 40 μg/mL
Motility 45.12 ± 11.10 21.51 ± 8.33a) 31.75 ± 7.13b) 25.30 ± 7.12 25.66 ± 7.91
Progressive motility 40.52 ± 5.21 16.63 ± 5.45a) 41.89 ± 5.14b) 20.55 ± 5.71 21.09 ± 5.41
VCL 63.12 ± 1.16 56.62 ± 0.71a) 59.40 ± 0.79 58.12 ± 0.87 56.33 ± 0.71
VSL 45.91 ± 0.69 37.22 ± 0.51a) 38.17 ± 0.64 36.59 ± 0.58 35.12 ± 0.50
VAP 50.45 ± 0.69 43.64 ± 0.60a) 45.92 ± 0.66 44.12 ± 0.59 43.52 ± 0.67
LIN 59.95 ± 0.62 50.60 ± 0.63a) 51.25 ± 0.57 49.44 ± 0.60 49.75 ± 0.69
SRT 70.30 ± 0.35 55.72 ± 0.31a) 57.11 ± 0.36 54.61 ± 0.30 54.23 ± 0.39
BCF 10.03 ± 0.06 8.71 ± 0.06a) 8.91 ± 0.05 8.77 ± 0.06 8.62 ± 0.06
ALH 9.73 ± 0.05 6.25 ± 0.05a) 6.63 ± 0.06 6.20 ± 0.05 6.22 ± 0.05

Values are presented as mean±standard error of the mean.
C, control; VCL, curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; LIN, linearity; SRT, straightness; BCF, beat cross frequency; ALH, 
amplitude of lateral head displacement.
a)p<0.05 significant differences vs. fresh control group; b)p<0.05 significant differences vs. frozen control group.

Table 2. Effect of Ceratonia siliqua concentrations 20, 30, and 40 μg/mL added to cryopreservation/thawing media on ROS intracellular, 
PMI, viability, MMP, and acrosome reaction of human spermatozoa 

Groups Fresh-C Frozen-C C. siliqua 20 μg/mL C. siliqua 30 μg/mL C. siliqua 40 μg/mL
ROS intracellular 40.1 ± 6.3 59.1 ± 6.1a) 52.0 ± 6.5b) 52.3 ± 6.1b) 51.3 ± 6.0b)

PMI 53.1 ± 3.5 24.4 ± 3.9a) 55.1 ± 3.4b) 41.3 ± 3.9b) 41.9 ± 3.5b)

Viability 71.3 ± 1.5 45.3 ± 1.09a) 51.6 ± 1.8b) 50.5 ± 1.3b) 50.9 ± 1.3b)

MMP 65.5 ± 4.2 33.6 ± 4.7a) 42.5 ± 4.9b) 44.2 ± 4.9b) 42.9 ± 4.5b)

Acrosome reaction 77.2 ± 5.5 56.5 ± 5.1a) 61.5 ± 5.9b) 60.3 ± 5.2b) 60.9 ± 5.7b)

Values are presented as mean±standard error of the mean.
ROS, reactive oxygen species; PMI, plasma membrane integrity; MMP, mitochondrial membrane potential; C, control.
a)p<0.05 significant differences vs. fresh control group; b)p<0.05 significant differences vs. frozen control group.
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moderate ROS level is required for optimal sperm function, high lev-
els are associated with the impairment of function [34]. ROS pro-
duced as a result of cryopreservation can damage the lipid, protein, 
and DNA structures of the sperm [35]. 

Studies have shown that cryopreservation reduces the activity of 
the sperm antioxidant system, leading to impaired cell motility, in-
tegrity, and membrane fluidity [33]. C. siliqua extract can protect 
against oxidative stress [15,36]. Various studies have indicated that 
the protective effect of this plant extract is due to its strong antioxi-
dant properties [12,19,37]. The results of the current study confirm 
the protective properties of this extract against oxidative stress, as 
the intracellular ROS level was significantly reduced at all concentra-
tions of C. siliqua extract. Although no previous research had directly 
examined the intracellular ROS level in sperm treated with C. siliqua 
extract, the improvement of ROS-dependent parameters in other 
studies aligns with this result. Previous studies have shown that C. si-
liqua extract can increase the activity of antioxidant enzymes such 
as catalase and superoxide dismutase [15], so the reduction of intra-
cellular ROS during cryopreservation can be explained by the capaci-
ty of C. siliqua extract to stimulate these enzymes. 

Notably, mitochondrial activity in oxidative phosphorylation can 
be a source of ROS production [38]. At all three concentrations of C. 
siliqua extract, the sperm MMP was significantly increased relative 
to the cryopreservation control group, most likely by reducing the 
level of intracellular ROS. Motility is an essential sperm parameter 
that can have a positive or negative effect on fertility. In the current 
study, the total and progressive movement in the cryopreservation 
control group were significantly lower than in the fresh group, likely 
due to the sensitivity of the adenosine triphosphate-dependent so-
dium-potassium pump and the consequent leakage of ions related 
to movement [39]. In the sperm treated with the extract, the total 
and progressive movement were improved compared to the cryo-
preservation control group, most notably in the sperm treated with 
20 µg/mL of the extract. These findings align with the results of Sab-
zeie et al. [19] and Faramarzi et al. [12]. Like the present study, those 
studies revealed not only a positive effect of C. siliqua extract on 
motility, but also an optimal extract concentration of 20 µg/mL. This 
is likely because C. siliqua extract has a greater capacity to reduce 
superoxide anions at 20 µg/mL than at other concentrations. How-
ever, for the other motor characteristics (average path velocity, cur-
vilinear velocity, straight-line velocity, mean linearity, straightness, 
amplitude of lateral head displacement, and beat cross frequency), 
we found no significant differences between the concentrations of 
20, 30, and 40 µg/mL or in comparison with the cryopreservation 
control group, which contradicts the study of Sabzeie et al. [19]. Mo-
tility is a known indicator of survival and of other health parameters 
such as PMI, mitochondria health, and even sperm DNA damage. 

Our results showed that the presence of C. siliqua extract in cryo-
preservation can help increase sperm viability. This finding supports 
the results of the Faramarzi et al. [12] study, which revealed a higher 
percentage of sperm survival in groups treated with the extract than 
in the control group; additionally, the survival rate of sperm treated 
with 20 µg/mL was significantly higher than among the control 
group or the sperm treated with 10 or 40 µg/mL. The improvement 
of this parameter can likely be attributed to the antioxidant contents 
of gallic acid, chlorogenic acid, cinnamic acid, and caffeic acid in C. 
siliqua extract. Generally, these compounds have been shown to re-
duce intracellular ROS and increase sperm viability. In the current 
study, the results of the HOS test indicated that the greatest mem-
brane integrity was present in the group treated with 20 µg/mL of 
extract, while this parameter was not significantly different in the 
groups with concentrations of 30 and 40 µg/mL. This finding is com-
pletely consistent with the result of Sabzeie et al. [19]. In our study, 
the presence of C. siliqua extract at all concentrations (20, 30, and 
40 µg/mL) led to a significant increase in the acrosome reaction 
compared to the cryopreservation control group. This result can be 
attributed to the antioxidant roles of this extract in countering the 
damage caused by oxidative stress as well as in osmotic balance reg-
ulation, membrane preservation, conjugation, and calcium regula-
tion. Accordingly, the role of extracellular antioxidants in improving 
sperm membrane resistance can be explained by the reduction of 
lipid peroxidation [40]. 

In conclusion, C. siliqua extract supplements at concentrations of 
20, 30, and 40 µg/mL improve sperm motility, viability, cell mem-
brane and mitochondrial potential, intracellular ROS, and the acro-
some reaction. A concentration of 20 µg/mL has a particularly high 
capacity to reduce intracellular ROS, oxidative stress, and its prod-
ucts, eventually improving ROS-affected parameters such as motility, 
PMI, MMP, and the acrosome reaction. 
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