Acknowledgement
This research work was funded by Institutional Fund Projects under grand no. (IFPIP: 845-305-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.
References
- Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3
- Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Bensaid, I. and Daikh, A.A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proc. I. Mech. E. Part C: J. Mech. Eng. Sci., 234(18), 3667-3688. https://doi.org/10.1177/0954406220916481.
- Daikh A.A, Drai, A., Houari, M.S.A. and Eltaher M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
- Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sen.2020.75.3.357.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Esen, I. (2020), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
- Esen, I. and Ozmen, R. (2022b), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
- Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
- Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022a), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
- Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021c), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Bas. Des. Struct. Mach., 51(5), 2607-2631. https://doi.org/10.1080/15397734.2021.1904255.
- Esen, I., O zarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
- Finot, M., Suresh. S., Bull, C. and Sampath. S. (1996), "Curvature changes during thermal cycling of a compositionally graded Ni/A12O3 multi-layered material", Mater. Sci. Eng. A-Struct., 205, 59-71. https://doi.org/10.1016/0921-5093(95)09892-5
- Hendi, A.A., Eltaher, A.A., Mohamed, S.A., Attia, M.A. and Abdalla, A.W. (2021), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-803. https://doi.org/10.12989/scs.2021.41.6.787.
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046.
- Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos Struct., 209, 811-829. https://doi.org/10.1016/j.compstruct.2018.10.106.
- Lim, C.W., Zhang, G. and Redd, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries", Math., 10, 408. https://doi.org/10.3390/math10030408.
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Math., 10, 583. https://doi.org/10.3390/math10040583.
- Miyamoto,Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic, Boston.
- Nejad, M.Z. and Hadi. A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nanobeams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.
- Nejad, M.Z. and Hadi. A. (2016c), "Eringen's non-local elasticity theory for bending analysis of bidirectional functionally graded Euler-Bernoulli nanobeams", Int. J. Eng. Sci., 106, 313-319. https://doi.org/10.1016/j.ijengsci.2016.05.005
- Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016a), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nanobeams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
- Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mechanica, 228(1), 141-155. https://doi.org/10.1007/s00707-016-1705-3.
- Ozmen, R., Kilic, R. and Esen, I. (2022), "Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2124000.
- Pydah, A. and Batra, R.C. (2017), "Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams", Compos. Struct., 172, 45-60. https://doi.org/10.1016/j.compstruct.2017.03.072.
- Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Eng. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.
- Shafiei, N., Mirjavadi, S.S., Mohasel Afshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of twodimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
- Simsek, M. (2015), "Bi-directional functionally graded materials (2D FGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
- Tang, Y., Li, C.L. and Yang, T. (2023a), "Application of the generalized differential quadrature method to study vibration and dynamic stability of tri-directional functionally graded beam under magneto-electro-elastic fields", Eng. Anal. Bound. Elem., 146, 808-823. https://doi.org/10.1016/j.compstruct.2021.113746.
- Tang, Y., Lv, X.F. and Yang, T.Z. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos Part B-Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
- Tang, Y., Ma, Z.S., Ding, Q. and Wang, T. (2021b), "Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis", Compos. Struct., 264, 113746. https://doi.org/10.1016/j.compstruct.2021.113746
- Tang, Y., Wang, G., Yang, T. and Ding, Q. (2023b), "Nonlinear dynamics of three-directional functional graded pipes conveying fluid with the integration of piezoelectric attachment and nonlinear energy sink", Nonlin. Dyn., 111(3), 2415-2442. https://doi.org/10.1007/s11071-022-07971-w.
- Tang, Y., Wang, T., Ma, Z.S. and Yang, T. (2021a), "Magneto-electro-elastic modelling and nonlinear vibration analysis of bi-directional functionally graded beams", Nonlin. Dyn., 105, 2195-2227. https://doi.org/10.1007/s11071-021-06656-0.
- Thang, P.T., Nguyen-Thoi, T. and Lee, L. (2021), "Modeling and analysis of bi-directional functionally graded nanobeams based on nonlocal strain gradient theory", Appl. Math. Comput., 407, 126303. https://doi.org/10.1016/j.amc.2021.126303.
- Truong, T.T., Nguyen-Thoi, T. and Lee, J. (2019), "Isogeometric size optimization of bi-directional functionally graded beams under static loads", Compos. Struct., 227, 111259. https://doi.org/10.1016/j.compstruct.2019.111259.
- Yang, T., Tang, Y., Li, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.
- Zhen, Y., Gong, Y. and Tang, Y. (2021), "Nonlinear vibration analysis of a supercritical fluid-conveying pipe made of functionally graded material with initial curvature", Compos. Struct., 268, 113980. https://doi.org/10.1016/j.compstruct.2021.113980.