DOI QR코드

DOI QR Code

Optimization of Zero-carbon Supply Chain Network by Redistribution of E-scooter Sharing

공유 E-스쿠터의 위치 재분배에 의한 탄소배출제로 공급망 네트워크의 최적화 방안

  • 중이민 (호남대학교 경영학과) ;
  • 진성 (호남대학교 경영학과)
  • Received : 2022.08.31
  • Accepted : 2023.04.28
  • Published : 2023.06.30

Abstract

The phenomenon of air pollution caused by excessive densification of transportation means is considered as a source of road mobile pollution. Although E-scooter sharing provide a lot of convenience as a means of urban traffic congestion and the last moving distance, the process of inappropriate use and scrapping, carbon emission increase, and E-scooter sharing is polluting the environment. Therefore, in this study, an optimization of zero-carbon supply chain network (ZSCN) model is proposed by reallocating the location of E-scooter sharing in terms of preventing the problem of battery overuse and long-distance use. Through the ZSCN model, E-scooter sharing can be used effectively, and the cost savings of reduced greenhouse gas emisions are verified. In order to implement the proposed ZSCN model, Genetic Algorithm (GA) method is adopted. Numerical experiments refer to the E-scooter sharing configuration location in the west district of G Metropolitan City, and reassemble it.

교통수단의 과밀도화로 인한 대기오염은 도로이동오염원이라고 인식되고 있다. 공유E-스쿠터는 도시교통체증과 마지막 이동거리 수단으로 많은 편리함을 제공하고 있지만 적절하지 않은 사용습관과 폐차 과정에서 발생하는 탄소배출로 인해 공유 E-스쿠터가 환경오염을 가중시키는 원인으로 지목되고 있다. 따라서 본 연구에서는 공유E-스쿠터의 핵심 부품인 배터리의 과도한 사용문제와 장거리 사용으로 인해 발생하는 문제를 해결하기 위하여 공유E-스쿠터의 위치를 재분배하는 방법으로 탄소배출제로 공급망네트워크(Zero-carbon Supply Chain Network: ZSCN) 최적화 모델을 제안한다. 제한한 ZSCN 모델을 통해 효율적으로 E-스쿠터를 이용할 수 있는 방법을 제시함으로써 온실가스배출량 감소와 비용 절감을 검증하였다. 제안된 ZSCN 모델의 신뢰성을 검증하기 위해 유전알고리즘(Genetic Algorithm: GA) 방법을 적용하였으며, 수치실험에서는 G광역시 서구지역의 공유 E-스쿠터 배치위치를 참고하여 ZSCN 모델을 적용하고 GA방법을 통해 그 최적해를 구하였다. 제안된 ZSCN 모델을 통해 효율적으로 공유 E-스쿠터를 이용할 수 있는 방법을 제시함으로써 온실가스배출량 감소와 비용 절감을 검증하였다.

Keywords

References

  1. Chen, X., Chuluunsukh, A., and Jang, J. H. (2021). Customized Model of Cold Chain Logistics Considering Hypergeometric Distribution, Journal of the Korea Industrial Information Systems Research, 26(5), 159-169.
  2. Chen, X. and Jang, E. M. (2022). A Sustainable Supply Chain Network Model Considering Carbon Neutrality and Personalization, Sustainability, 14, 4803. https://doi.org/10.3390/su14084803
  3. Fabien, L. (2022). What is the value of swappable batteries for a shared e-scooter service? Research in Transportation Businee & Management, 45, Part C, 100843. https://doi.org/10.1016/j.rtbm.2022.100843
  4. Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley, Publishing Company.
  5. Gossling, S. (2020). Integrating e-scooters in urban transportation: Problems, policies, and the prospect of system change, Transportation Research Part D: Transport and Environment, 79, 102230, https://doi.org/10.1016/j.trd.2020.102230
  6. Guo, Y., and Zhang, Y. (2021). Understanding factors influencing shared e-scooter usage and its impact on auto mode substitution, Transportation research part D: transport and environment, 99, 102991.
  7. Holland, J. H. (1975). Adaptation in Natural and Artifical Systems, University of Michigan Press, Ann Arbor.
  8. Hollingsworth, J., Copeland, B., and Johnson, J. X. (2019). Are e-scooters polluters? The environmental impacts of shared dockless electric scooters, Environmental Research Letters, 14(8), 084031.
  9. Liao, F. and Correia, G. (2022). Electric carsharing and micromobility: A literature review on their usage pattern, demand, and potential impacts, International Journal of Sustainable Transportation, 16(3). https://doi.org/10.1080/15568318.2020.1861394
  10. Lee, H., Baek, K., Chung, J. H., and Kim, J. (2021). Factors affecting heterogeneity in willingness to use e-scooter sharing services, Transportation Research Part D: Transport and Environment, 92, 102751, https://doi.org/10.1016/j.trd.2021.102751
  11. Moreau, H., de Jamblinne de Meux, L., Zeller, V., D'Ans, P., Ruwet, C., and Achten, W. M. (2020). Dockless e-scooter: A green solution for mobility? Comparative case study between dockless e-scooters, displaced transport, and personal e-scooters. Sustainability, 12(5), 1803.
  12. Seoul Research Institute. (2018). How much air pollution will decrease if the number of electric vehicles increases?, https://www.si.re.kr (Accessed on Aug. 20th, 2022)
  13. Severengiz, S., Finke, S., Schelte, N., and Wendt, N. (2020). Life cycle assessment on the mobility service E-scooter sharing, In 2020 IEEE European Technology and Engineering Management Summit (E-TEMS) (pp. 1-6). IEEE.
  14. Shaheen, S., and Cohen, A. (2019). Shared micromoblity policy toolkit: Docked and dockless bike and scooter sharing, Available online, https://doi.org/10.7922/G2TH8JW7
  15. Sivanandam, S. N., and Deepa, S. N. (2008). Genetic algorithms, Introduction to genetic algorithms(pp. 15-37), Springer, Berlin, Heidelberg.
  16. Yun, Y. S., Chuluunsukh, A., and Chen, X. (2018). Hybrid Genetic Algorithm for Optimizing Closed-loop Supply Chain Model with Direct Shipment and Delivery, New Physics: Sae Mulli, 68(6), 683-692. https://doi.org/10.3938/NPSM.68.683
  17. Zhong, Y. M. (2022). Optimization of e-scooter sharing sustainable green supply chain network problems, Master. D. Thesis, Graduate School of Honam University, GwangJu, Korea.