DOI QR코드

DOI QR Code

Evaluation and certification of stamp forming process for commercial aircraft thermoplastic fuselage composite structures

민수항공기 열가소성 복합재 동체 부품개발을 위한 고속 열 성형 공정 평가 및 인증

  • Ji-Sub Noh (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Ho-Young Shin (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Min-Chan Jung (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Joon-Hyeok Hwang (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • June-Woo Kwak (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Hyun-Woo Ju (Korea Aerospace Industries, Ltd) ;
  • Jin-Hwe Kweon (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Young-Woo Nam (Department of Smart Drone Engineering, Korea Aerospace University)
  • 노지섭 (경상국립대학교 기계항공공학부) ;
  • 신호영 (경상국립대학교 기계항공공학부) ;
  • 정민찬 (경상국립대학교 기계항공공학부) ;
  • 황준혁 (경상국립대학교 기계항공공학부) ;
  • 곽준우 (경상국립대학교 기계항공공학부) ;
  • 주현우 (한국항공우주산업(주)) ;
  • 권진회 (경상국립대학교 기계항공공학부) ;
  • 남영우 (한국항공대학교 스마트드론공학과)
  • Received : 2022.11.28
  • Accepted : 2023.05.30
  • Published : 2023.06.30

Abstract

This study established the stamp forming process conditions to develop thermoplastic composite fuselage parts for commercial aircraft. Initially, the blank size and shape, tensioner position, and pre-load were numerically optimized according to the wrinkle and uniformity of fabricated structures using AniForm software. Afterward, the determined stamp forming conditions were employed to fabricate the real structures for verification. Good agreement between experimental and numerical analysis in terms of wrinkle distribution and thickness uniformity was obtained. For further evaluation, the crystallinity and porosity of the fabricated structure were analyzed based on CMH-17 and Part 23 to consider the composite material certification system. As a result, the crystallinity of all components was more than 21 %, while the porosity was less than 2 %. This means that the fabricated composite components offer potential for the aircraft fuselage structure with a certificated manufacturing method.

본 논문에서는 민수항공기 열가소성 복합재 동체 부품을 개발하기 위해 부품 설계, 고속 열 성형 공정 기반 제작, 제작된 부품의 성형성을 평가하였다. 고속 열 성형 해석을 수행하여 Blank 크기 및 형상, Tensioner 위치 및 초기 하중 등을 고려한 최적 공정변수를 수립하였고, 이를 기반으로 실제 제작을 수행하였다. 제작된 부품의 주름 분포, 두께 균일성 등을 평가하여 유한요소해석 기반의 공정 예측 정확성을 검증하였다. 또한, 제작단계에서 복합재료 인증체계를 고려하기 위해 CMH-17, Part 23을 기반으로 제작된 부품의 결정화도, 기공률을 분석하였고, 그 결과 모든 부품에서 결정화도 21% 이상, 기공률은 2% 이하를 보였다. 이를 통해 본 논문에서 수행한 공정 및 제작된 부품은 실제 항공기 동체 구조에 적용될 수 있는 품질과 인증 적합성에 일부 부합하는 것으로 판단하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구 결과입니다(과제번호: P0010341). 본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구 결과입니다(과제번호: NRF-2017R1A5A1015311).

References

  1. U. K. Vaidya and K. K. Chawla, "Processing of Fibre Reinforced Thermoplastic Composites", Int. Mater. Rev., vol. 53, no. 4, pp. 185-218, 2008.  https://doi.org/10.1179/174328008X325223
  2. F. Henning, L. Karger, D. Dorr, F. J. Schirmaier, J. Seuffert, and A. Bernath, "Fast processing and continuous simulation of automotive structural composite components," Compos Sci Technol, vol. 171, pp. 261-279, 2019. https://doi.org/10.1016/j.compscitech.2018.12.007
  3. H. Suemasu, K. Friedrich, and M. Hou, "On deformation of woven fabric- reinforced thermoplastic composites during stamp-forming," Composites Manufacturing, vol. 5, pp. 31-39, 1994.  https://doi.org/10.1016/0956-7143(94)90017-5
  4. J. M. Lee, C. J. Lee, B. M. Kim, and D. C. Ko, "Design of prepreg compression molding for manufacturing of CFRTP B-pillar reinforcement with equivalent mechanical properties to existing steel part," Int J Precis Eng Manuf, vol. 21, pp. 545-556, 2020. https://doi.org/10.1007/s12541-019-00265-z
  5. B. Vieille, W. Albouy, L. Chevalier, and L. Taleb, "About the influence of stamping on thermoplastic-based composites for aeronautical applications," Composites part B: Engineering, vol. 45, no. 1, pp. 821-834, 2013. https://doi.org/10.1016/j.compositesb.2012.07.047
  6. H. Suemasu, K. Friedrich, and M. Hou, "On deformation of woven fabric- reinforced thermoplastic composites during stamp-forming," Composites Manufacturing, vol. 5, no. 1 pp. 31-39, 1994.  https://doi.org/10.1016/0956-7143(94)90017-5
  7. D. Trudel-Boucher, B. Fisa, J. Denault, and P. Gagnon, "Experimental investigation of stamp forming of unconsolidated commingled E-glass/polypropylene fabrics," Composites Science and Technology, vol. 66, pp. 555-570, 2006.  https://doi.org/10.1016/j.compscitech.2005.05.036
  8. Boeing, Boeing 787 from the ground up. 2019. 
  9. G. Pandian, M. Pecht, E. Zio, and M. Hodkiewicz, "Data-driven reliability analysis of Boeing 787 Dreamliner", Chinese Journal of Aeronautics, vol. 33, no 7, pp. 1969-1979, 2020.  https://doi.org/10.1016/j.cja.2020.02.003
  10. R. M. Stack and F. Lai, "Developments in Thermoforming Thermoplastic Composites" Thermoforming Quarterly, vol. 32 pp. 48-53, 2013. 
  11. S. Mashau, "An Investigation into the Manufacturing of complex, Three-Dimensional Components using Continuous Fibre Reinforced Thermoplastic Composite", Master thesis, University of Witwatersrand, 2017. 
  12. P. Bean, R A. Lopez-Anido, and S. Vel, 'Integration of Material Characterization, Thermoforming Simulation, and As-Formed Structural Analysis for Thermoplastic Composites', Polymers, vol. 14, no. 9, 1877, 2022. 
  13. P. Han, J. Butterfield, S. Buchanan, R. McCool, Z. Jiang, M. Price, and A. Murphy, "The prediction of process-induced deformation in a thermoplastic composite in support of manufacturing simulation", Journal of Engineering Manufacture, vol. 227, no. 10, pp. 1417-1429, 2013.  https://doi.org/10.1177/0954405413488362
  14. S. P. Haanappel, R. H. W. ten Thije, U. Sachs, B. Rietman, and R. Akkerman. "Formability analyses of uni-directional and textile reinforced thermoplastics," Composites Part A: Applied Science and Manufacturing, vol. 56, pp. 80-92, 2014.  https://doi.org/10.1016/j.compositesa.2013.09.009
  15. Y. J. Jeon, Y. M. Heo, S. H. Yun, and D. E. Kim, "Stamping process design to develop a urea tank cover for excavators based on sheet metal forming analysis", J. Korea Society of Die & Mold Engineering, vol. 14, pp. 49-55, 2020. 
  16. S. M. Samuel, "Thermostamping of Lond-Fiber Thermoplastic Composites: Consideration of Wrinkles, Distortions, and Cost", Master thesis, Concordia University, 2018. 
  17. J. W. Suh, "A Consideration on Composite Material Certification for Small Aircraft Structure", Current Industrial and Technological Trends in Aerospace, vol. 7, pp. 128-140, 2009. 
  18. J. Sjolander, P. Hallander, and M. Akermo, "Forming induced wrinkling of composite laminates: a numerical study on wrinkling mechanisms", Composite Part A Appl Sci Manuf, vol. 78, pp. 234-245, 2016.  https://doi.org/10.1016/j.compositesa.2015.08.025
  19. H. J. Lee, Y. J. Jeon, and H. Cho, "Development of a process to apply uniform pressure to bond CFRP patches to the inner surface of undercut-shaped sheet metal parts", Korean Society of Die & Mold Engineering, vol. 14, no. 4, pp. 65-70, 2020. 
  20. G. Bogucki, W. McCarvill, S. Ward, and J. S. Tomblin, "Guidelines for the Development of Process Specifications, Instructions, and Controls for the Fabrication of Fiber-Reinforced Polymer Composites", FAA Technical Report, DOT/FAA/AR02/110, NTIS, 2003. 
  21. R. A. Brooks, W. Hongyan, D. Zerong, X. Jie, S. Qinghua, H. Liu, J. P. Dear, and N. Li, "A review on stamp forming of continuous fibre-reinforced thermoplastics", International Journal of Lightweight Materials and Manufacture, vol. 5, no. 3, pp. 411-430, 2022.  https://doi.org/10.1016/j.ijlmm.2022.05.001
  22. A. Benkaddour, G. Lebrun, and L. Laberge-Lebel, "Thermostamping of [0/90]n carbon/peek laminates: Influence of support configuration and demolding temperature on part consolidation", Polymer composites, vol. 39, no. 9, pp. 3341-3352, 2018.  https://doi.org/10.1002/pc.24354
  23. S. Haanappel, "Forming of UD Fibre Reinforced Thermoplastics", PhD Thesis, University of Twente, Netherlands, 2013. 
  24. D. Saenz-Castillo, M. I. Martin, S. Calvo, F. Rodriguez-Lence, and A. Guemes, "Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites" Composites Part A: Applied Science and Manufacturing, vol. 121, pp. 308-320, 2019.  https://doi.org/10.1016/j.compositesa.2019.03.035
  25. Toray Advanced Composites. Processing guidelines for TC1225 T700/PAEK UD tape. Data sheet. Internal document provided by Toray to DLR, 2019.