DOI QR코드

DOI QR Code

The antibiotic resistance of Lactococcus lactis isolated from the farmed Anguilla japonica

양식 극동산 뱀장어(Anguilla japonica)에서 분리된 Lactococcus lactis의 항생제 내성

  • Hyunwoo Kim (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Eunsup Lee (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Sung Jun Lee (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • So-Ra Han (Genome-based BioIT Convergence Institute) ;
  • Tae-Jin Oh (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University) ;
  • Myoung Sug Kim (Pathology Research Division, National Institute of Fisheries Science) ;
  • Soo-Jin Kim (Pathology Research Division, National Institute of Fisheries Science) ;
  • Se Ryun Kwon (Department of Aquatic Life Medical Sciences, Sunmoon University)
  • 김현우 (선문대학교 수산생명의학과) ;
  • 이은섭 (선문대학교 수산생명의학과) ;
  • 이승준 (선문대학교 수산생명의학과) ;
  • 한소라 (유전체 기반 바이오IT 융합연구소) ;
  • 오태진 (선문대학교 제약생명공학과) ;
  • 김명석 (국립수산과학원 병리연구과) ;
  • 김수진 (국립수산과학원 병리연구과) ;
  • 권세련 (선문대학교 수산생명의학과)
  • Received : 2023.05.23
  • Accepted : 2023.06.05
  • Published : 2023.06.30

Abstract

Spleen, liver and intestinal mucus of Anguilla japonica cultured in a domestic recirculating aquaculture system were sampled to isolate and identify culturable bacteria. Based on 16s rRNA sequence analysis, the most frequently isolated bacterium was Lactococcus lactis. To determine the antibiotic susceptibility of L. lactis, the minimum inhibitory concentration (MIC) test was conducted using five isolates (A1, A21, A65, A125 and A130) from Anguilla japonica and three isolates (KCTC2013, KCTC3769 and KCTC3899) from Korean Collection for Type Culture. Differences of MICs between A. japonica-derived isolates and KCTC isolates were observed in Tetracycline, Oxytetracycline, Doxycyclin and Erythromycin. MICs obtained for five L. lactis isolates from A. japonica were >64 ㎍/mL for Tetracycline, >256 ㎍/mL for Oxytetracycline, 16-32 ㎍/mL for Doxycyclin, and > 64㎍/mL for Erythromycin. On the other hand, KCTC isolates showed the MICs of 0.25 ㎍/mL, 0.25 ㎍/mL, 0.12 ㎍/mL and 0.03-0.06 ㎍/mL for respective antibiotics. Furthermore, it was confirmed that genomic DNA and plasmid DNA isolated from A. japonica-derived L. lactis isolates have antibiotic resistance genes and transfer origin. These findings suggest that A. japonica-derived L. lactis isolates may have the potential to mediate the transfer of various antibiotic resistance genes. Therefore, it is advisable to use probiotics along with the feed or use them as postbiotics rather than dispersing them directly into the water in aquaculture system.

Keywords

Acknowledgement

이 연구는 국립수산과학원 (R2023058, 수산분야 항생제 통합감시 및 내성균 연구)의 지원에 의해 진행되었습니다.

References

  1. Bennett, P. M.: Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. British Journal of Pharmacology. 153 (S1): 347-357, 2008. https://doi.org/10.1038/sj.bjp.0707607
  2. Boucher, I., Emond, E., Parrot, M., Moineau, S.: DNA sequence analysis of three Lactococcus lactis plasmids encoding phage resistance mechanisms. Journal of Dairy Science, 84:1610-1620, 2001. https://doi.org/10.3168/jds.S0022-0302(01)74595-X
  3. Clinical and Laboratory Standards Institute.: M45 Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 2018.
  4. Elliott, J. A., Facklam, R. R.: Antimicrobial susceptibilities of Lactococcus lactis and Lactococcus garvieae and a proposed method to discriminate between them. Journal of Clinical Microbiology, 34(5): 1296-1298, 1996. https://doi.org/10.1128/jcm.34.5.1296-1298.1996
  5. European Committee On Antimicrobial Susceptibility Testing: Broth microdilution - EUCAST reading guide v 4.0, EUCAST, 2022.
  6. Han, K. J., Lee, N. K., Park, H., Paik, H. D.: Anticancer and Anti-Inflammatory Activity of Probiotic Lactococcus lactis NK34. Journal of Microbiology and Biotechnology, 25(10): 1697-1701, 2015. https://doi.org/10.4014/jmb.1503.03033
  7. Heo, W. S., Kim, Y. R., Kim, E. Y., Bai, S. C., Kong, I. S.: Effects of dietary probiotic, Lactococcus lactis subsp. lactis I2, supplementation on the growth and immune response of olive flounder (Paralichthys olivaceus). Aquaculture, 376-379:20-24, 2013. https://doi.org/10.1016/j.aquaculture.2012.11.009
  8. Kim, J. H., Lee, C. H., Heui, K. E.: Transferable R plasmid of Streptococci Ioslation from Diseased Olive Flounder (Paralichthys olivaceus) in Jeju. JOURNAL OF FISH PATHOLOGY, 19(3): 267-276, 2006.
  9. Jang, M. H., Lee, N. S., Cho, M., Song, J. Y.: Status and Characteristics of JEECV (Japanese Eel Endothelial Cell-infecting Virus) and AnHV (Anguillid Herpesvirus 1) Infections in Domestic Farmed Eels Anguilla japonica, Anguilla bicolor and Anguilla marmorata. Korean Journal of Fisheries and Aquatic Sciences, 54(5): 668-675, 2021.
  10. Joh, S. J., Ahn, E. H., Lee, H. J., Shin, G. W., Kwon, J. H., Park, C. G.: Bacterial pathogens and flora isolated from farm-cultured eels (Anguilla japonica) and their environmental waters in Korean eel farms. Veterinary Microbiology, 163: 190-195, 2013. https://doi.org/10.1016/j.vetmic.2012.11.004
  11. Kim, T. O., Mondal, S. C., Jeong, C. R., Kim, S. R., Ban, O. H., Jung, Y. H., Yang, J. W., Kim, S. J.: Safety evaluation of Lactococcus lactis IDCC 2301 isolated from homemade cheese. Food Science & Nutrition, 10: 67-74, 2022.
  12. Kohler, V., Keller, W., Grohmann, E.: Regulation of gram-positive conjugation. Frontiers in Microbiology, 10(MAY): 1134, 2019.
  13. Lee, S. H., Katya, K., Park, Y. J., Won, S. H., Seong, M. J., Hamidoghli. A., Bai, S. C.: Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish & Shellfish Immunology, 61: 201-210, 2017. https://doi.org/10.1016/j.fsi.2016.12.035
  14. Nguyen, T. L., Park, C. I., Kim, D. H.: Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture, 471:113-120, 2017. https://doi.org/10.1016/j.aquaculture.2017.01.008
  15. Ryu, S. D., Kim, K. Y., Cho, D. Y., Kim, Y. H., Oh, S. J.: Complete genome sequences of Lactococcus lactis JNU 534, a potential food and feed preservative. Journal of Animal Science and Technology, 64(3): 599-602, 2022. https://doi.org/10.5187/jast.2022.e34
  16. Sequeiros, C., Garces, M. E., Vallejo, M., Marguet, E. R., Olivera,N. L.:Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae. Archives of Microbiology, 197(3): 449-458, 2015. https://doi.org/10.1007/s00203-014-1076-x
  17. Song, A. AL., In, L. L. A., Lim, S. H. E., Rahim, R. A.: A review on Lactococcus lactis: from food to factory. Microbial Cell Factories, 16:55, 2017.
  18. Touraki, M., Karamanlidou, G., Koziotis, M., Christidis, I.: Antibacterial effect of Lactococcus lactis subsp. lactis on Artemia franciscana nauplii and Dicentrarchus labrax larvae against the fish pathogen Vibrio anguillarum. Aquaculture International 2012 21:2, 21(2): 481-495, 2012.
  19. Virolle, C., Goldlust, K., Djermoun, S., Bigot, S., Lesterlin, C.: Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes, 11(11): 1239, 2020.
  20. Won, S. H., Hamidoghli, A., Choi, W. S., Park, Y. J., Jang, W. J., Kong, I. S., Bai, S. C.: Effects of Bacillus subtilis WB60 and Lactococcus lactis on Growth, Immune Responses, Histology and Gene Expression in Nile Tilapia, Oreochromis niloticus. Microorganisms, 8(1): 67, 2020.
  21. Woo, S. J., Kim, M. S., Jeong, M. G., Do, M. Y., Hwang, S.D., Kim, W. J.:Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. Antibiotics, 11: 343. 2022.
  22. Zheng, C. C., Cai, X. Y., Huang, M. M., Mkingule. I., Sun, C., Qian, S. C., Wu, Z. J., Han, B. N., Fei, H.:Effect of biological additives on Japanese eel (Anguilla japonica) growth performance, digestive enzymes activity and immunology. Fish & Shellfish Immunology, 84: 704-710, 2019.
  23. 국립수산과학원: 2021 수산용 항생제 감수성 검사 매뉴얼. 해양수산부 국립수산과학원, 2021.
  24. 국립수산물품질관리원: 2022 수산용의약품 제품 요약해설집. 해양수산부 국립수산물품질관리원, 2022.
  25. 권용국, 조성준, 김민철, 장환, 권준헌.: 국내 양식 뱀장어의 세균성 질병 발생 실태 조사. 농림수산검역검사본부 조류질병과, 2005.
  26. 김대현, 이희건, 임병성, 박성우.: 2004~2017년 충청도 및 전라도 지역 양식 뱀장어, Anguilla japonica 의 질병 감염 현황. 수산해양교육연구, 31(3): 884-892, 2019. https://doi.org/10.13000/JFMSE.2019.6.31.3.884
  27. 박보미, 김민주, 정연겸, 박진일, 유홍식, 오은경.: 태안군 이원면 육상오염원 배출수에서 분리한 그람음성균의 항생제 내성 특성. 한국수산과학회지, 54(4): 377-387, 2021. https://doi.org/10.5657/KFAS.2021.0377
  28. 백은경.: 지속가능한 뱀장어 양식업을 위한 자원관리 개선방안 한국과 일본을 중심으로 -. 한국도서연구, 32(3):103-125, 2020. https://doi.org/10.26840/JKI.32.3.103
  29. 손나연, 김태운, 육현균.: 김치에서 분리한 Lactococcus lactis 균주의 항리스테리아 활성 및 부분 정제된 박테리오신의 특성. 한국식품위생안정성학회지, 32(2): 97-106, 2022.