DOI QR코드

DOI QR Code

Stability of WSSV(white spot syndrome virus) in bivalve mollusk digestive enzymes and aquatic environments

이매패류 소화 효소 및 환경수에서의 WSSV(white spot syndrome virus) 안정성

  • Joon Gyu Min (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Hyun Do Jeong (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kwang Il Kim (Department of Aquatic Life Medicine, Pukyong National University)
  • 민준규 (부경대학교 수산생명의학과) ;
  • 정현도 (부경대학교 수산생명의학과) ;
  • 김광일 (부경대학교 수산생명의학과)
  • Received : 2023.05.09
  • Accepted : 2023.05.30
  • Published : 2023.06.30

Abstract

White spot syndrome virus (WSSV) is a viral disease that causes significant economic losses in the global shrimp industry, primarily through horizontal transmission among aquatic animals. The virus can also be spread by shellfish, which can concentrate and release the virus through filter-feeding activity. The potential for virus transmission depends on whether the virus can survive in the environment for a while without being digested. From the artificial degradation analysis in the environmental water, the number of WSSV genome copies decreased more rapidly in seawater than in freshwater, and at 18℃ compared to 23℃. Moreover, WSSV had a lower digestion rate with shellfish digestive enzyme compared to the reduction rate in seawater, indicating that WSSV may persist in the digestive tracts of shellfish for longer, increasing the chance of transmission. These findings conclude that shellfish play a significant role in the transmission of WSSV and further research is needed to determine their specific contribution to the virus spread in aquatic environments.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1I1A2064371).

References

  1. Areekijseree, M., Engkagul, A., Kovitvadhi, U., Thongpan, A., Mingmuang, M., Pakkong, P., & Rungruangsak-Torrissen, K. (2004). Temperature and pH characteristics of amylase and proteinase of adult freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus Simpson 1900. Aquaculture, 234(1-4), 575-587. https://doi.org/10.1016/j.aquaculture.2003.12.008
  2. Campos, C. J., & Lees, D. N. (2014). Environmental transmission of human noroviruses in shellfish waters. Applied and environmental microbiology, 80(12), 3552-3561. https://doi.org/10.1128/AEM.04188-13
  3. Chou, H., Huang, C. Y., Wang, C. H., Chiang, H. C., & Lo, C. F. (1995). Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Diseases of aquatic organisms, 23(3), 165-173. https://doi.org/10.3354/dao023165
  4. de Abreu Correa, A., Souza, D. S. M., Moresco, V., Kleemann, C. R., Garcia, L. A. T., & Barardi, C. R. M. (2012). Stability of human enteric viruses in seawater samples from mollusc depuration tanks coupled with ultraviolet irradiation. Journal of applied microbiology, 113(6), 1554-1563. https://doi.org/10.1111/jam.12010
  5. Grodzki, M., Schaeffer, J., Piquet, J. C., Le Saux, J. C., Cheve, J., Ollivier, J., Pendu, J. & Le Guyader, F. S. (2014). Bioaccumulation efficiency, tissue distribution, and environmental occurrence of hepatitis E virus in bivalve shellfish from France. Applied and environmental microbiology, 80(14), 4269-4276. https://doi.org/10.1128/AEM.00978-14
  6. Hall, A. J., Eisenbart, V. G., Etingue, A. L., Gould, L. H., Lopman, B. A., & Parashar, U. D. (2012). Epidemiology of foodborne norovirus outbreaks, United States, 2001-2008. Emerging infectious diseases, 18(10), 1566.
  7. Hawley, L. M., & Garver, K. A. (2008). Stability of viral hemorrhagic septicemia virus (VHSV) in freshwater and seawater at various temperatures. Diseases of aquatic organisms, 82(3), 171-178. https://doi.org/10.3354/dao01998
  8. Jeong, J. B., Jun, L. J., Yoo, M. H., Kim, M. S., Komisar, J. L., & Do Jeong, H. (2003). Characterization of the DNA nucleotide sequences in the genome of red sea bream iridoviruses isolated in Korea. Aquaculture, 220(1-4), 119-133. https://doi.org/10.1016/S0044-8486(02)00538-0
  9. Jeong, J. B., Cho, H. J., Jun, L. J., Hong, S. H., Chung, J. K., & Do Jeong, H. (2008). Transmission of iridovirus from freshwater ornamental fish (pearl gourami) to marine fish (rock bream). Diseases of aquatic organisms, 82(1), 27-36. https://doi.org/10.3354/dao01961
  10. Jin, J. W., Kim, K. I., Kim, J. K., Park, N. G., & Do Jeong, H. (2014). Dynamics of megalocytivirus transmission between bivalve molluscs and rock bream Oplegnathus fasciatus. Aquaculture, 428, 29-34. https://doi.org/10.1016/j.aquaculture.2014.02.010
  11. Kim, K. I., Kim, Y. C., Kwon, W. J., & Do Jeong, H. (2017). Evaluation of blue mussel Mytilus edulis as vector for viral hemorrhagic septicemia virus (VHSV). Diseases of Aquatic Organisms, 126(3), 239-246. https://doi.org/10.3354/dao03180
  12. Krog, J. S., Larsen, L. E., & Schultz, A. C. (2014). Enteric porcine viruses in farmed shellfish in Denmark. International Journal of Food Microbiology, 186, 105-109. https://doi.org/10.1016/j.ijfoodmicro.2014.06.012
  13. Martinez-Albores, A., Lopez-Santamarina, A., Rodriguez, J. A., Ibarra, I. S., Mondragon, A. D. C., Miranda, J. M., Lamas, A., & Cepeda, A. (2020). Complementary methods to improve the depuration of bivalves: A review. Foods, 9(2), 129.
  14. Min, (2017), "Risk assessment to shrimp induced by the White spot syndrome virus accumulated in shellfish", Master thesis, Pukyong National University, Korea
  15. Molloy, S. D., Pietrak, M. R., Bouchard, D. A., & Bricknell, I. (2014). The interaction of infectious salmon anaemia virus (ISAV) with the blue mussel, Mytilus edulis. Aquaculture research, 45(3), 509-518 https://doi.org/10.1111/j.1365-2109.2012.03254.x
  16. Momoyama, K., Hiraoka, M., Nakano, H., & Sameshima, M. (1998). Cryopreservation of penaeid rodshaped DNA virus (PRDV) and its survival in sea water at different temperatures. Fish Pathology, 33(2), 95-96. https://doi.org/10.3147/jsfp.33.95
  17. Mortensen, S. H. (1993). Passage of infectious pancreatic necrosis virus (IPNV) through invertebrates in an aquatic food chain.
  18. Nakano, H., Koube, H., Umezawa, S., Momoyama, K., Hiraoka, M., Inouye, K., & Oseko, N. (1994). Mass mortalities of cultured kuruma shrimp, Penaeus japonicus, in Japan in 1993: epizootiological survey and infection trials. Fish Pathology, 29(2), 135-139. https://doi.org/10.3147/jsfp.29.135
  19. Pace, B. T., Hawke, J. P., Subramanian, R., & Green, C. C. (2016). Experimental inoculation of Louisiana red swamp crayfish Procambarus clarkii with white spot syndrome virus (WSSV). Diseases of aquatic organisms, 120(2), 143-150. https://doi.org/10.3354/dao03018
  20. Park, J. Y., Kim, K. I., Joh, S. J., Kang, J. Y., Kwon, J. H., Lee, H. S., & Kwon, Y. K. (2013). Development of a highly sensitive single-tube nested PCR protocol directed toward the sequence of virion envelope proteins for detection of white spot syndrome virus infection: Improvement of PCR methods for detection of WSSV. Aquaculture, 410, 225-229. https://doi.org/10.1016/j.aquaculture.2013.06.036
  21. Paul-Pont, I., Gonzalez, P., Baudrimont, M., Jude, F., Raymond, N., Bourrasseau, L., Goic, N., Haynes, F., Legeay, A., Paillard, C., & de Montaudouin, X. (2010). Interactive effects of metal contamination and pathogenic organisms on the marine bivalve Cerastoderma edule. Marine Pollution Bulletin, 60(4), 515-525. https://doi.org/10.1016/j.marpolbul.2009.11.013
  22. Pietrak, M. R., Molloy, S. D., Bouchard, D. A., Singer, J. T., & Bricknell, I. (2012). Potential role of Mytilus edulis in modulating the infectious pressure of Vibrio anguillarum 02β on an integrated multitrophic aquaculture farm. Aquaculture, 326, 36-39. https://doi.org/10.1016/j.aquaculture.2011.11.024
  23. Prayitno, S. B., Verdegem, M. C., Verreth, J. A., & Vlak, J. M. (2022). White spot syndrome virus host range and impact on transmission. Reviews in Aquaculture, 14(4), 1843-1860. https://doi.org/10.1111/raq.12676
  24. Polo, D., Feal, X., & Romalde, J. L. (2015). Mathematical model for viral depuration kinetics in shellfish: An useful tool to estimate the risk for the consumers. Food Microbiology, 49, 220-225. https://doi.org/10.1016/j.fm.2015.02.015
  25. Razafimahefa, R. M., Ludwig-Begall, L. F., & Thiry, E. (2020). Cockles and mussels, alive, alive, oh-The role of bivalve molluscs as transmission vehicles for human norovirus infections. Transboundary and Emerging Diseases, 67, 9-25. https://doi.org/10.1111/tbed.13165
  26. Reyes, A., Salazar, M., & Granja, C. (2007). Temperature modifies gene expression in subcuticular epithelial cells of white spot syndrome virus-infected Litopenaeus vannamei. Developmental & Comparative Immunology, 31(1), 23-29. https://doi.org/10.1016/j.dci.2006.05.003
  27. Ridler, N., Wowchuk, M., Robinson, B., Barrington, K., Chopin, T., Robinson, S., Page, F., Reid, G., Szemerda, M., Sewuster, J., & Boyne-Travis, S. (2007). Integrated multi- trophic aquaculture (IMTA): a potential strategic choice for farmers. Aquaculture Economics & Management, 11(1), 99-110. https://doi.org/10.1080/13657300701202767
  28. Rodney, E., Herrera, P., Luxama, J., Boykin, M., Crawford, A., Carroll, M. A., & Catapane, E. J. (2007). Bioaccumulation and tissue distribution of arsenic, cadmium, copper and zinc in Crassostrea virginica grown at two different depths in Jamaica Bay, New York. In vivo, 29(1), 16.
  29. Seitz, S. R., Leon, J. S., Schwab, K. J., Lyon, G. M., Dowd, M., McDaniels, M., Abdulhafid, G., Fernandez, M. L., Lindesmith, L. C., Baric, R. S., & Moe, C. L. (2011). Norovirus infectivity in humans and persistence in water. Applied and environmental microbiology, 77(19), 6884-6888. https://doi.org/10.1128/AEM.05806-11
  30. Stentiford, G. D., Neil, D. M., Peeler, E. J., Shields, J. D., Small, H. J., Flegel, T. W., Vlak, J. M., Jones, B., Morado, F., Moss, S., Lotz, J., Bartholomay, L., Behringer, D. C, Jauton, C., & Lightner, D. V. (2012). Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. Journal of invertebrate pathology, 110(2), 141-157. https://doi.org/10.1016/j.jip.2012.03.013
  31. Toranzo, A.E. & Metricic, F. M. (1982). Comparative stability of two salmonid viruses and poliovirus in fresh, estuarine and marine waters. Journal of Fish Diseases, 5(3), 223-231. https://doi.org/10.1111/j.1365-2761.1982.tb00477.x
  32. Vazquez-Boucard, C., Alvarez-Ruiz, P., Escobedo-Fregoso, C., Anguiano-Vega, G., de Jesus Duran-Avelar, M., Pinto, V. S., & Escobedo-Bonilla, C. M. (2010). Detection of white spot syndrome virus (WSSV) in the Pacific oyster Crassostrea gigas. Journal of invertebrate pathology, 104(3), 245-247. https://doi.org/10.1016/j.jip.2010.04.004
  33. Wang, H. C., Hirono, I., Maningas, M. B. B., Somboonwiwat, K., Stentiford, G., & ICTV Report Consortium. (2019). ICTV virus taxonomy profile: Nimaviridae. Journal of General Virology, 100(7), 1053-1054. https://doi.org/10.1099/jgv.0.001248