DOI QR코드

DOI QR Code

파라핀 지관 구조체를 활용한 Air-Deck 발파공법의 파쇄입도 및 지반 진동 저감 분포 특성에 관한 수치해석적 연구

A Numerical Study on the Rock Fragment Distribution Characterist-ics of Air-Deck Blasting Method Using Paraffin Waxed Paper Tube

  • 신찬휘 (전북대학교 공과대학 에너지저장/변환공학대학원) ;
  • 김영근 ((주)테라엔지니어링 기술사 사무소) ;
  • 민경조 (전북대학교 공과대학 토목/환경/자원에너지공학부) ;
  • ;
  • 조상호 (전북대학교 공과대학 에너지저장/변환공학대학원)
  • 투고 : 2023.06.13
  • 심사 : 2023.06.27
  • 발행 : 2023.06.30

초록

도심 지역의 지하 굴착 작업이 증가함에 따라, 효율적이고 경제적인 발파공법에 대한 연구가 활발히 진행되고 있다. 이와 관련하여 최근 제안된 파라핀 지관을 활용한 Air-Deck 발파공법은 선행 연구를 통하여 기존 발파공법에 비해 파쇄입도 향상 효과가 있음을 입증하였으나, 공법의 파괴 과정과 메커니즘에 대한 이해는 아직 미흡한 실정이다. 따라서, 본 연구에서는 Hybrid FDEM 기반 3차원 동적 파괴과정 해석 기법을 활용하여 선행 연구된 현장 실험 결과를 수치해석적으로 모사했으며, 발파 하중에 의한 암반 파괴 과정을 비교 분석하였다. 그 결과, PA-Deck 발파공법을 사용하였을 때 발파에 의해 발생하는 파쇄입도는 최대 22.8% 감소하였으며, 입도 균일성은 12.1% 향상되는 것을 확인하였다.

The growing need for urban underground excavation has led to an increased focus on efficient and economical blasting methods. In this regard, the recently proposed Air-Deck blasting method, which utilizes a pariffin-waxed paper tube, has been proven to improve the granularity of fractures compared to the conventional blasting method through previous studies. However, the understanding of the fracture process and mechanism of the method is still insufficient. Therefore, in this study, a Hybrid FDEM-based three dimensional dynamic fracture process analysis (3D-DFPA) technique was used to numerically simulate the results of previously studied field experiments, and the process of rock fracture by blasting load was compared and analyzed. As a result, it was found that the fragment distribution generated by blasting was reduced by up to 22.8% and the fragment uniformity was improved by 12.1% when the PA-Deck blasting method was used.

키워드

과제정보

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. 2020R1I1A3074451)

참고문헌

  1. 강대우, 허원호, 양국정, & 박동철, 2011, 석회석 광산에서 기존 일반발파와 이중분상 Air Deck 발파공법의 비교연구, 화약발파, Vol. 29, No. 2, pp. 13-31.
  2. 강대우, & 허원호, 2011, 에어데크 적용 시 발파공 내 압력변화 특성에 대한 수치해석, 화약발파, Vol. 29, No. 1, pp. 1-9.
  3. 민경조, 김영근, 신찬휘, 조상호. 2023, 파라핀 지관 구조체를 활용한 Air-Deck 발파공법의 지반진동 저감 특성에 관한 연구, 화약발파, Vol. 41, No.1, pp. 32-45
  4. Cheng, R., Zhou, Z., Chen, W., & Hao, H., 2021, Effects of axial air deck on blast-induced ground vibration. Rock Mechanics and Rock Engineering, 1-17.
  5. Chiappetta, R. F., 2004, New blasting technique to eliminate subgrade drilling, improve fragmentation, reduce explosive consumption and lower ground vibrations, Journal of explosives engineering, Vol, 21, No, 1, pp. 10-12.
  6. Cho, Sang Ho, and Katsuhiko Kaneko., 2004, Influence of the applied pressure waveform on the dynamic fracture processes in rock. International Journal of Rock Mechanics and Mining Sciences Vol. 41, No. 5, pp. 771-784. https://doi.org/10.1016/j.ijrmms.2004.02.006
  7. Duvall, W. I. 1953. Strain-wave shapes in rock near explosions. Geophysics, Vol. 18, No. 2, pp. 310-323. https://doi.org/10.1190/1.1437875
  8. Fourney, W. L., Barker, D. B., & Holloway, D. C., 1981, Model studies of explosive well stimulation techniques, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 18, No. 2, pp. 113-127.
  9. Jhanwar, J. C., Jethwa, J. L., & Reddy, A. H., 2000, Influence of air-deck blasting on fragmentation in jointed rocks in an open-pit manganese mine, Engineering Geology, Vol, 57, No. 1-2, pp. 13-29. https://doi.org/10.1016/S0013-7952(99)00125-8
  10. Liu, L., & Katsabanis, P. D., 2020, Numerical modelling of the effects of air decking/decoupling in production and controlled blasting, In Rock Fragmentation by Blasting, pp. 319-330.
  11. Mahabadi, O. K., Lisjak, A., Munjiza, A., & Grasselli, G., 2012, Y-Geo: new combined finite-discrete element numerical code for geomechanical applications. International Journal of Geomechanics, Vol. 12, No. 6, pp. 676-688. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216
  12. Melnikov, N. V., & Marchenko, L. N., 1970, Effective methods of application of explosion energy in mining and construction, In The 12th US Symposium on Rock Mechanics (USRMS).
  13. Mertuszka, P., Fulawka, K., Pytlik, M., & Szastok, M, 2020, The influence of temperature on the detonation velocity of selected emulsion explosives, Journal of Energetic Materials, Vol. 38, No. 3, pp. 336-347. https://doi.org/10.1080/07370652.2019.1702739
  14. Min, G., Oh, S., Park, S., Cho, S., You, Y., & Park, L., 2019, Evaluation of the dynamic shear strength of rocks under confining pressure. In ISRM Rock Dynamics Summit. OnePetro.
  15. Moxon, N. T., Mead, D., & Richardson, S. B., 1993, Air-decked blasting techniques: some collaborative experiments, Transactions of the Institution of Mining and Metallurgy, Section A. Mining Industry, pp. 102.
  16. Munjiza, A., Andrews, K. R. F., & White, J. K., 1999, Combined single and smeared crack model in combined finite-discrete element analysis. International journal for numerical methods in engineering, Vol. 44, No. 1, pp. 41-57. https://doi.org/10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A
  17. Munjiza, A. A., 2004, The combined finite-discrete element method. John Wiley & Sons.
  18. Ning, Y., Yang, J., Ma, G., & Chen, P., 2011. Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis. Rock mechanics and rock engineering, Vol. 44, pp. 483-490. https://doi.org/10.1007/s00603-010-0132-3
  19. Singh, T. N., Sazid, M., & Saharan, M. R., 2012, A study to simulate air deck crater blast formation-a numerical approach. In ISRM Regional Symposium-7th Asian Rock Mechanics Symposium. OnePetro.
  20. Starfield, Anthony M., and Joseph M. Pugliese., 1968, "Compression waves generated in rock by cylindrical explosive charges: a comparison between a computer model and field measurements." International Journal of Rock Mechanics and Mining Sciences & Geomechanics. Vol. 5. No. 1. pp. 65-77. https://doi.org/10.1016/0148-9062(68)90023-5
  21. Yan, P., Zhou, W., Lu, W., Chen, M., & Zhou, C., 2016. Simulation of bench blasting considering fragmentation size distribution. International Journal of Impact Engineering, Vol. 90, pp. 132-145. https://doi.org/10.1016/j.ijimpeng.2015.11.015
  22. Yang, J., Shi, C., Yang, W., Chen, X., & Zhang, Y., 2019. Numerical simulation of column charge explosive in rock masses with particle flow code. Granular Matter, Vol. 21, No. 4, pp. 96.
  23. Yu, Z., Shi, X. Z., Zhang, Z. X., Gou, Y. G., Miao, X. H., & Kalipi, I., 2022. Numerical Investigation of Blast-Induced Rock Movement Characteristics in Open-Pit Bench Blasting Using Bonded-Particle Method. Rock Mechanics and Rock Engineering, Vol. 55, No. 6, pp. 3599-3619. https://doi.org/10.1007/s00603-022-02831-w