Acknowledgement
The support from Institute of Bridge Engineering at University at Buffalo is gratefully acknowledged.
References
- Bani-Hani, K.A., (2007), "Vibration control of wind-induced response of tall buildings with an active tuned mass damper using neural networks", Struct. Control Health Moni., 14(1), 83-108. https://doi.org/10.1002/stc.85.
- Battaini, M., Casciati, F. and Faravelli, L. (1998), "Fuzzy control of structural vibration. An active mass system driven by a fuzzy controller", Earthq. Eng. Struct. D., 27(11), 1267-1276. https://doi.org/10.1002/(SICI)1096-9845(1998110)27:11%3C1267::AID-EQE782%3E3.0.CO;2-D.
- Bera, K.K. and Chandiramani, N.K. (2019), "Flutter control of bridge deck using experimental aeroderivatives and LQR-driven winglets", J. Bridge Eng., 24(11), 04019100. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001467.
- Chen, X. and Kareem, A. (2003), "Efficacy of tuned mass dampers for bridge flutter control", J. Struct. Eng., 129(10), 1291-1300. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1291).
- Chen, X., Kareem, A. and Matsumoto, M. (2001), "Multimode coupled flutter and buffeting analysis of long span bridges", J. Wind Eng. Ind. Aerod., 89(7-8), 649-664. https://doi.org/10.1016/S0167-6105(01)00064-2.
- Ghaboussi, J. and Joghataie, A. (1995), "Active control of structures using neural networks", J. Eng. Mech., 121(4), 555-567. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:4(555).
- Gu, M., Chen, S.R. and Chang, C.C. (2002), "Control of wind-induced vibrations of long-span bridges by semi-active lever-type TMD", J. Wind Eng. Ind. Aerod., 90(2),111-126. https://doi.org/10.1016/S0167-6105(01)00165-9.
- Guo, Z. (2013), "Principle and method of active control for vortex-induced vibration and flutter of long-span suspension bridge", Ph.D. Dissertation, Tongji University, Shanghai.
- Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N. and Kingsbury, B. (2012), "Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups", IEEE Signal Process. Mag., 29(6), 82-97. https://doi.org/ 10.1109/MSP.2012.2205597.
- Hornik, K., Stinchcombe, M. and White, H. (1990), "Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks", Neural Networks, 3(5), 551-560. https://doi.org/10.1016/0893-6080(90)90005-6.
- Huynh, T. and Thoft-Christensen, P. (2001), "Suspension bridge flutter for girders with separate control flaps", J. Bridge Eng., 6(3), 168-175. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:3(168).
- Kobayashi, H. and Nagaoka, H. (1992), "Active control of flutter of a suspension bridge", J. Wind Eng. Ind. Aerod., 41(1-3), 143-151. https://doi.org/10.1016/0167-6105(92)90402-V.
- Korlin, R. and Starossek, U. (2007), "Wind tunnel test of an active mass damper for bridge decks", J. Wind Eng. Ind. Aerod., 95(4), 267-277. https://doi.org/10.1016/j.jweia.2006.06.015.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Adv. Neural Inf. Process. Syst., 25, 1097-1105.
- Li, K., Ge, Y.J., Guo, Z.W. and Zhao, L. (2015), "Theoretical framework of feedback aerodynamic control of flutter oscillation for long-span suspension bridges by the twin-winglet system", J. Wind Eng. Ind. Aerod., 145, 166-177. https://doi.org/10.1016/j.jweia.2015.06.012.
- Li, K., Zhao, L., Ge, Y.J. and Guo, Z.W. (2017), "Flutter suppression of a suspension bridge sectional model by the feedback controlled twin-winglet system", J. Wind Eng. Ind. Aerod., 168, 101-109. https://doi.org/10.1016/j.jweia.2017.05.007.
- Li, S. and Wu, T. (2022), "Deep reinforcement learning-based decision support system for transportation infrastructure management under hurricane events", Struct. Safety, 99, 102254. https://doi.org/10.1016/j.strusafe.2022.102254.
- Li, S., Snaiki, R. and Wu, T. (2021a), "A knowledge-enhanced deep reinforcement learning-based shape optimizer for aerodynamic mitigation of wind-sensitive structures", Comp.-Aided Civil Infrastruct. Eng., 36(6), 733-746. https://doi.org/10.1111/mice.12655.
- Li, S., Snaiki, R. and Wu, T. (2021b), "Active simulation of transient wind field in a multiple-fan wind tunnel via deep reinforcement learning", J. Eng. Mech., 147(9), 04021056. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001967.
- Li, Y.L., Chen, X.Y., Yu, C.J., Togbenou, K., Wang, B. and Zhu, L.D. (2018), "Effects of wind fairing angle on aerodynamic characteristics and dynamic responses of a streamlined trapezoidal box girder", J. Wind Eng. Ind. Aerod., 177, 69-78. https://doi.org/10.1016/j.jweia.2018.04.006.
- Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016), "Continuous control with deep reinforcement learning", Proceeding 4th Int. Conf. Learning Represent., ICLR, San Juan, Sept. https://doi.org/10.48550/arXiv.1509.02971.
- Lin, Y.K. and Yang, J.N. (1983), "Multimode bridge response to wind excitations", J. Eng. Mech., 109(2), 586-603. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:2(586).
- Lin, Y.Y., Cheng, C.M. and Lee, C.H. (2000), "A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges", Eng. Struct., 22(9), 1195-1204. https://doi.org/10.1016/S0141-0296(99)00049-8.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S. (2015), "Human-level control through deep reinforcement learning", Nature, 518(7540), 529-533. https://doi.org/10.1038/nature14236.
- Montoya, M.C., Hernandez, S. and Nieto, F. (2018b), "Shape optimization of streamlined decks of cable-stayed bridges considering aeroelastic and structural constraints", J. Wind Eng. Ind. Aerod., 177, 429-455. https://doi.org/10.1016/j.jweia.2017.12.018.
- Montoya, M.C., Nieto, F., Hernandez, S., Kusano, I., Alvarez, A.J. and Jurado, J.A. (2018a), "CFD-based aeroelastic characterization of streamlined bridge deck cross-sections subject to shape modifications using surrogate models", J. Wind Eng. Ind. Aerod., 177, 405-428. https://doi.org/10.1016/j.jweia.2018.01.014.
- Omenzetter, P., Wilde, K. and Fujino, Y. (2002a), "Study of passive deck-flaps flutter control system on full bridge model. I: theory", J. Eng. Mech., 128(3), 264-279. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:3(264).
- Omenzetter, P., Wilde, K. and Fujino, Y. (2002b), "Study of passive deck-flaps flutter control system on full bridge model. II: results", J. Eng. Mech., 128(3), 280-286. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:3(280).
- Rahmani, H.R., Chase, G., Wiering, M. and Konke, C. (2019), "A framework for brain learning-based control of smart structures", Adv. Eng. Inf., 42, 100986. https://doi.org/10.1016/j.aei.2019.100986.
- Roger, K.L. (1977), "Airplane math modeling methods for active control design", AGARD-CP-228, 4-1-4-11.
- Sallab, A.E., Abdou, M., Perot, E. and Yogamani, S. (2017), "Deep reinforcement learning framework for autonomous driving", Electro. Imag., 2017(19), 70-76. https://doi.org/10.48550/arXiv.1704.02532.
- Scanlan, R.H. and Tomko, J. (1971), "Air foil and bridge deck flutter derivatives", J. Eng. Mech. Division., 97(6), 1717-1737. https://doi.org/10.1061/JMCEA3.0001526.
- Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. and Chen, Y. (2017), "Mastering the game of go without human knowledge", Nature, 550(7676), 354-359. https://doi.org/10.1038/nature24270.
- Sutton, R. S. and Barto, A. G. (2018), Reinforcement Learning: An Introduction, MIT press, Cambridge, MA, United States of America.
- Wang, Q., Yan, L., Hu, G., Li, C., Xiao, Y., Xiong, H., Rabault, J. and Noack, B.R. (2022), "DRLinFluids: an open-source python platform of coupling deep reinforcement learning and OpenFOAM", Phys. Fluids, 34(8), 081801. https://doi.org/10.1063/5.0103113.
- Wang, Y., Sun, J., He, H. and Sun, C. (2019), "Deterministic policy gradient with integral compensator for robust quadrotor control", IEEE Transactions Syst., Man, Cybernet.: Syst., 50(10), 3713-3725. https://doi.org/10.1109/TSMC.2018.2884725.
- Wilde, K. and Fujino, Y. (1998). "Aerodynamic control of bridge deck flutter by active surfaces", J. Eng. Mech., 124(7),718-727. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:7(718).
- Wilde, K., Omenzetter, P. and Fujino, Y. (2001), "Suppression of bridge flutter by active deck-flaps control system", J. Eng. Mech., 127(1), 80-89. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(80).
- Wu, T. and Snaiki, R. (2022), "Applications of machine learning to wind engineering", Front. Built Environ., 8, 811460. https://doi.org/10.3389/fbuil.2022.811460.
- Wu, T., Kareem, A. and Ge, Y. (2013), "Linear and nonlinear aeroelastic analysis frameworks for cable-supported bridges", Nonlinear Dyn., 74, 487-516. https://doi.org/10.1007/s11071-013-0984-7.
- Xu, F., Wu, T., Ying, X. and Kareem, A. (2016), "Higher-order self-excited drag forces on bridge decks", J. Eng. Mech., 142(3), 06015007. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001036.
- Yan, G. and Zhou, L.L. (2006), "Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers", J. Sound Vib., 296(1-2), 368-382. https://doi.org/10.1016/j.jsv.2006.03.011.
- Yang, Y., Wu, T., Ge, Y. and Kareem, A. (2015), "Aerodynamic stabilization mechanism of a twin box girder with various slot widths", J. Bridge Eng., 20(3), 04014067. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000645.