DOI QR코드

DOI QR Code

Short-term wind speed forecast for the early warning of conductor flashover accident

  • Wenjuan Lou (Institute of Structural Engineering, Zhejiang University) ;
  • Weizheng Zhou (Institute of Structural Engineering, Zhejiang University) ;
  • Dengguo Wu (Institute of Structural Engineering, Zhejiang University) ;
  • Siran Chen (Institute of Structural Engineering, Zhejiang University)
  • Received : 2022.08.28
  • Accepted : 2022.12.19
  • Published : 2023.05.25

Abstract

The flashover is one of the common incidents in transmission line systems. The wind-induced swing angle of the suspension insulator string is the key critical index for flashover incident limit state function. Based on the equivalent static wind load obtained from Gust Loading Envelope method, the wind-induced swing angle of suspension insulator string could be explicitly expressed by 10-min mean wind speed and line parameters, with consideration of wind speed correlation along conductor span. Therefore, the short-term forecast of the 10-min mean wind speed trend will be of great significance to the early warning of flashover incidents. This study proposes an improved hybrid prediction model based on the secondary data decomposition technology and neural network optimized by Bat algorithm for short-term multi-step-ahead wind speed prediction. In the improved hybrid prediction model, the high-frequency components of original wind speed data will be secondary decomposed because of greater prediction error. Then, the Bat algorithm is used further to optimize the initial weight and threshold parameters of the neural network to improve prediction accuracy. The accuracy and superiority of the proposed prediction model are verified by the application example. The obtained prediction results of wind speed will be substituted into the limit state function of flashover incidents to assess the flashover risk. The results show that the improved hybrid model has better performance in the multi-step-ahead forecast and can be used for flashover incident early warning.

Keywords

Acknowledgement

The research described in this paper was partially supported by the project of the State Grid Zhejiang Electric Power Co. Ltd (B311DS210010).

References

  1. Aasim, S.N. and Mohapatra, A. (2019), "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting", Renew. Energy, 136, 758-768. https://doi.org/10.1016/J.RENENE.2019.01.031.
  2. Aboshosha, H., and El Damatty, A.A. (2015), "Dynamic response of transmission line conductors under downburst and synoptic winds", Wind Struct., 21(2), 241-272. https://doi.org/10.12989/WAS.2015.21.2.241.
  3. Bi, F., Li, X., Liu, C., Tian, C., Ma, T., and Yang, X. (2019), "Knock detection based on the optimized variational mode decomposition", Measurement, 140, 1-13. https://doi.org/10.1016/J.MEASUREMENT.2019.03.042.
  4. Bokde, N., Feijoo, A., Villanueva, D., Kulat, K., Bokde, N., Feijoo, A., Villanueva, D. and Kulat, K. (2019), "A review on hybrid empirical mode decomposition models for wind speed and wind power prediction", Energies, 12(2), 254. https://doi.org/10.3390/en12020254.
  5. Cadenas, E. and Rivera, W. (2010), "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model", Renew. Energy, 35(12), 2732-2738. https://doi.org/10.1016/j.renene.2010.04.022.
  6. Catalao, J.P.S., Pousinho, H.M.I. and Mendes, V.M.F. (2011), "Short-term wind power forecasting in Portugal by neural networks and wavelet transform", Renew. Energy, 36(4), 1245-1251. https://doi.org/10.1016/J.RENENE.2010.09.016.
  7. Chen, G., Tang, B., Zeng, X., Zhou, P., Kang, P. and Long, H. (2022), "Short-term wind speed forecasting based on long short-term memory and improved BP neural network", Int. J. Electr. Power Energy Syst., 134, 107365. https://doi.org/10.1016/J.IJEPES.2021.107365.
  8. Chen, X. and Kareem, A. (2004), "Equivalent static wind loads on buildings: new model", J. Struct. Eng., 130(10), 1425-1435. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1425).
  9. Chen, X. and Kareem, A. (2005), "Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes", J. Struct. Eng., 131(7), 1071-1082. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1071).
  10. Cheng, J., Yu, D. and Yang, Y. (2006), "Research on the intrinsic mode function (IMF) criterion in EMD method", Mech. Syst. Signal Process., 20(4), 817-824. https://doi.org/10.1016/J.YMSSP.2005.09.011.
  11. Darwish, M.M., EI Damatty, A.A. and Hangan, H. (2010), "Dynamic characteristics of transmission line conductors and behaviour under turbulent downburst loading", Wind Struct., 13(4), 327-346. https://doi.org/10.12989/WAS.2010.13.4.327.
  12. de Mattos Neto, P.S.G., de Oliveira, J.F.L., de Oliveira Santos Junior, D.S., Siqueira, H.V., da Nobrega Marinho, M.H. and Madeiro, F. (2020), "A hybrid nonlinear combination system for monthly wind speed forecasting", IEEE Access., 8, 191365-191377. https://doi.org/10.1109/ACCESS.2020.3032070.
  13. de Mattos Neto, P.S.G., de Oliveira, J.F.L., Domingos, D.S., Siqueira, H.V., Marinho, M.H.N. and Madeiro, F. (2021), "An adaptive hybrid system using deep learning for wind speed forecasting", Inf. Sci. , 581, 495-514. https://doi.org/10.1016/J.INS.2021.09.054.
  14. Demolli, H., Dokuz, A.S., Ecemis, A. and Gokcek, M. (2019), "Wind power forecasting based on daily wind speed data using machine learning algorithms", Energy Convers. Manag., 198, 111823. https://doi.org/10.1016/j.enconman.2019.111823.
  15. Dragomiretskiy, K. and Zosso, D. (2014), "Variational mode decomposition", IEEE Trans. Signal Process., 62(3), 531-544. https://doi.org/10.1109/TSP.2013.2288675.
  16. Erdem, E. and Shi, J. (2011), "ARMA based approaches for forecasting the tuple of wind speed and direction", Appl. Energy, 88(4), 1405-1414. https://doi.org/10.1016/j.apenergy.2010.10.031.
  17. Hamada, A. and El Damatty, A.A. (2011), "Behaviour of guyed transmission line structures under tornado wind loading", Comput. Struct., 89(11-12), 986-1003. https://doi.org/10.1016/J.COMPSTRUC.2011.01.015.
  18. Jiang, Y., Huang, G., Yang, Q., Yan, Z. and Zhang, C. (2019), "A novel probabilistic wind speed prediction approach using real time refined variational model decomposition and conditional kernel density estimation", Energy Convers. Manag., 185, 758-773. https://doi.org/10.1016/J.ENCONMAN.2019.02.028.
  19. Kasperski, M. (1992), "Extreme wind load distributions for linear and nonlinear design", Eng. Struct., 14(1), 27-34. https://doi.org/10.1016/0141-0296(92)90005-B.
  20. Khain, A., Lynn, B. and Shpund, J. (2016), "High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes", Atmos. Res., 167, 129-145. https://doi.org/10.1016/j.atmosres.2015.07.014.
  21. Li, G. and Shi, J. (2010), "On comparing three artificial neural networks for wind speed forecasting", Appl. Energy, 87(7), 2313-2320. https://doi.org/10.1016/J.APENERGY.2009.12.013.
  22. Li, H.Z., Guo, S., Li, C.J. and Sun, J.Q. (2013), "A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm", Knowl.-Based Syst., 37, 378-387. https://doi.org/10.1016/J.KNOSYS.2012.08.015.
  23. Li, T., Luo, B., Liu, L. and Wu, T. (2015), "Wind accident analysis of transmission line in China Southern Power Grid's Coastal Regions; Wind accident analysis of transmission line in China Southern Power Grid's Coastal Regions", 2015 5th Int. Conf. Electr. Util. Deregul. Restruct. Power Technol., 1700-1740. https://doi.org/10.1109/DRPT.2015.7432507.
  24. Liu, H. and Duan, Z. (2020), "A vanishing moment ensemble model for wind speed multi-step prediction with multi-objective base model selection", Appl. Energy, 261, 114367. https://doi.org/10.1016/J.APENERGY.2019.114367.
  25. Liu, H., Chen, C., Tian, H.Q. and Li, Y.F. (2012), "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks", Renew. Energy, 48, 545-556. https://doi.org/10.1016/J.RENENE.2012.06.012.
  26. Liu, H., Tian, H.Q., Liang, X.F. and Li, Y.F. (2015), "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks", Appl. Energy, 157, 183-194. https://doi.org/10.1016/J.APENERGY.2015.08.014.
  27. Liu, M.D., Ding, L. and Bai, Y.L. (2021), "Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction", Energy Convers. Manag., 233, 113917. https://doi.org/10.1016/J.ENCONMAN.2021.113917.
  28. Liu, N., Tang, Q., Zhang, J., Fan, W. and Liu, J. (2014), "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids", Appl. Energy, 129, 336-345. https://doi.org/10.1016/J.APENERGY.2014.05.023.
  29. Lou, W., Wu, D. and Xu, H. (2019), "Wind-induced conductor response considering the nonproportionality of generalized aerodynamic damping", J. Mech. Sci. Technol., 33(7), 3075-3084. https://doi.org/10.1007/s12206-019-0602-9.
  30. Lou, W.J., Luo, G. and Hu, W.K. (2016), "Calculation method for equivalent static wind loads and wind load adjustment coefficients for transmission lines", J. Zhejiang Univ. (Eng. Sci.), 50(11), 2120-2127. https://doi.org/10.3785/j.issn.1008-973X.2016.11.012.
  31. Ma, Z., Chen, H., Wang, J., Yang, X., Yan, R., Jia, J. and Xu, W. (2020), "Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction", Energy Convers. Manag., 205, 112345. https://doi.org/10.1016/J.ENCONMAN.2019.112345.
  32. Meng, A., Ge, J., Yin, H. and Chen, S. (2016), "Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm", Energy Convers. Manag., 114, 75-88. https://doi.org/10.1016/J.ENCONMAN.2016.02.013.
  33. Milligan, M., Schwartz, M. and Wan, Y.H. (2004), "Statistical wind power forecasting for U.S. wind farms", Bull. Am. Meteorol. Soc., 3637-3644.
  34. Mohandes, M.A., Rehman, S. and Halawani, T.O. (1998), "A neural networks approach for wind speed prediction", Renew. Energy, 13(3), 345-354. https://doi.org/10.1016/S0960-1481(98)00001-9.
  35. Niu, D., Liang, Y. and Hong, W.C. (2017), "Wind speed forecasting based on EMD and GRNN optimized by FOA", Energies, 10(12), 2001. https://doi.org/10.3390/en10122001.
  36. Qu, Z., Mao, W., Zhang, K., Zhang, W. and Li, Z. (2019), "Multistep wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network", Renew. Energy, 133, 919-929. https://doi.org/10.1016/J.RENENE.2018.10.043.
  37. Ren, C., An, N., Wang, J., Li, L., Hu, B. and Shang, D. (2014), "Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting", Knowl.-Based Syst., 56, 226-239. https://doi.org/10.1016/J.KNOSYS.2013.11.015.
  38. Santhosh, M., Venkaiah, C. and Vinod Kumar, D.M. (2018), "Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction", Energy Convers. Manag., 168, 482-493. https://doi.org/10.1016/J.ENCONMAN.2018.04.099.
  39. Sun, N., Zhou, J., Chen, L., Jia, B., Tayyab, M. and Peng, T. (2018), "An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine", Energy, 165, 939-957. https://doi.org/10.1016/J.ENERGY.2018.09.180.
  40. Task Committee on Electrical Transmission Line Structural Loading (2020), Guidelines for Electrical Transmission Line Structural Loading (Fourth Edition), American Society of Civil Engineers, Reston, VA, USA.
  41. Wang, S., Zhang, N., Wu, L. and Wang, Y. (2016), "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method", Renew. Energy, 94, 629-636. https://doi.org/10.1016/J.RENENE.2016.03.103.
  42. Wu, M., Stefanakos, C., Gao, Z. and Haver, S. (2019), "Prediction of short-term wind and wave conditions for marine operations using a multi-step-ahead decomposition-ANFIS model and quantification of its uncertainty", Ocean Eng., 188, 106300. https://doi.org/10.1016/J.OCEANENG.2019.106300.
  43. Wu, Z. and Huang, N.E. (2009), "Ensemble empirical mode decomposition: A noise-assisted data analysis method", Adv. Adapt. Data Anal., 1(1), 1-41. https://doi.org/10.1142/S1793536909000047.
  44. Xiang, L., Li, J., Hu, A. and Zhang, Y. (2020), "Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method", Energy Convers. Manag., 220, 113098. https://doi.org/10.1016/J.ENCONMAN.2020.113098.
  45. Xiao, L., Qian, F. and Shao, W. (2017), "Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm", Energy Convers. Manag., 143, 410-430. https://doi.org/10.1016/J.ENCONMAN.2017.04.012.
  46. Yan, B., Lin, X., Luo, W., Chen, Z. and Liu, Z. (2010), "Numerical Study on Dynamic Swing of Suspension Insulator String in Overhead Transmission Line under Wind Load", IEEE Trans. Power Deliv., 25(1), 248-295. https://doi.org/10.1109/TPWRD.2009.2035391.
  47. Yang, X.-S. and Hossein Gandomi, A. (2012), "Bat algorithm: a novel approach for global engineering optimization", 29, 464-483. https://doi.org/10.1108/02644401211235834.
  48. Yeh, K.S., Zhang, X., Gopalakrishnan, S., Aberson, S., Rogers, R., Marks, F. and Atlas, R. (2012), "Performance of the experimental HWRF in the 2008 Hurricane Season", Nat. Hazards, 63(3), 1439-1449. https://doi.org/10.1007/s11069-011-9787-7.
  49. Zhang, P.G. (2003), "Time series forecasting using a hybrid ARIMA and neural network model", Neurocomputing, 50, 159-175. https://doi.org/10.1016/S0925-2312(01)00702-0.
  50. Zhang, Q., Lai, K.K., Niu, D., Wang, Q. and Zhang, X. (2012), "A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power", Energies, 5(9), 3329-3346. https://doi.org/10.3390/EN5093329.
  51. Zhang, W., Lin, Z. and Liu, X. (2022), "Short-term offshore wind power forecasting - a hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA) and deep-learning-based Long Short-Term Memory (LSTM)", Renew. Energy, 185, 611-628. https://doi.org/10.1016/J.RENENE.2021.12.100.
  52. Zhang, W., Qu, Z., Zhang, K., Mao, W., Ma, Y. and Fan, X. (2017), "A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting", Energy Convers. Manag., 136, 439-451. https://doi.org/10.1016/J.ENCONMAN.2017.01.022.
  53. Zhao, Y., Li, C., Fu, W., Liu, J., Yu, T. and Chen, H. (2020), "A modified variational mode decomposition method based on envelope nesting and multi-criteria evaluation", J. Sound Vib., 468, 115099. https://doi.org/10.1016/J.JSV.2019.115099.