소듐이온전지 음극 소재용 금속 칼코겐화물 나노구조체 합성을 위한 에어로졸 분무 열분해 공정의 최신 동향

  • 조중상 (충북대학교 공업화학과)
  • Published : 2023.06.01

Abstract

Keywords

References

  1. N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, Angew. Chem. Int. Ed., 51, 9994 (2012); Angew. Chem., 124, 10134 (2012). https://doi.org/10.1002/anie.201201429 
  2. D. Larcher and J. M. Tarascon, Nat. Chem., 7, 19 (2015). https://doi.org/10.1038/nchem.2085 
  3. M. Li, J. Lu, Z. Chen, and K. Amine, Adv. Mater., 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561 
  4. Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z. D. Deng, and J. Xiao, J. Power Sources, 286, 330 (2015). http://doi.org/10.1016/j.jpowsour.2015.03.164 
  5. M. Winter, B. Barnett, and K. Xu, Chem. Rev., 118, 11433 (2018). https://doi.org/10.1021/acs.chemrev.8b00422 
  6. G. Zubi, R. Dufo-Ljpez, M. Carvalho, and G. Pasaoglu, Renew. Sust. Energy. Rev., 89, 292 (2018). https://doi.org/10.1016/j.rser.2018.03.002 
  7. M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, Adv. Funct. Mater., 23, 947 (2013). https://doi.org/10.1002/adfm.201200691 
  8. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Chem. Rev., 114, 11636 (2014). https://doi.org/10.1021/cr500192f 
  9. H. Pan, Y. S. Hu, and L. Chen, Energy Environ. Sci., 6, 2338 (2013). https://doi.org/10.1039/c3ee40847g 
  10. D. Kundu, E. Talaie, V. Duffort, and L. F. Nazar, Angew. Chem. Int. Ed., 54, 3431 (2015); Angew. Chem., 127, 3495 (2015). https://doi.org/10.1002/anie.201410376 
  11. Y. Fang, X. Y. Yu, and X. W. Lou, Angew. Chem. Int. Ed., 56, 5801 (2017); Angew. Chem., 129, 5895 (2017). https://doi.org/10.1002/anie.201702024 
  12. X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, and Y. Huang, Sci. Rep., 5, 9254 (2015). https://doi.org/10.1038/srep09254 
  13. J. Kim, H. Kim, and K. Kang, Adv. Energy Mater., 8, 1702646 (2018). https://doi.org/10.1002/aenm.201702646 
  14. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed., 47, 2930-2946 (2008); Angew. Chem., 120, 2972 (2008). https://doi.org/10.1002/anie.200702505 
  15. H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, and H. Yuan, J. Mater. Chem. A, 3, 17899 (2015). https://doi.org/10.1039/c5ta03181h 
  16. W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, and L. Hu, Acc. Chem. Res., 49, 231 (2016). https://doi.org/10.1021/acs.accounts.5b00482 
  17. Y. Kim, K. H. Ha, S. M. Oh, and K. T. Lee, Chem. Eur. J., 20, 11980 (2014). https://doi.org/10.1002/chem.201402511 
  18. A. Rudola, K. Saravanan, C. W. Mason, and P. Balaya, J. Mater. Chem. A, 1, 2653 (2013). https://doi.org/10.1039/C2TA01057G 
  19. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, and C. Wang, Nat. Commun., 5, 4033 (2014). https://doi.org/10.1038/ncomms5033 
  20. B. Xiao, T. Rojo, and X. Li, ChemSusChem, 12, 133 (2019). https://doi.org/10.1002/cssc.201801879 
  21. B. Farbod, K. Cui, W. P. Kalisvaart, M. Kupsta, B. Zahiri, A. Kohandehghan, E. M. Lotfabad, Z. Li, E. J. Luber, and D. Mitlin, ACS Nano, 8, 4415 (2014). https://doi.org/10.1021/nn4063598 
  22. Y. Kim, Y. Park, A. Choi, N. S. Choi, J. Kim, J. Lee, J. H. Ryu, S. M. Oh, and K. T. Lee, Adv. Mater., 25, 3045 (2013). https://doi.org/https://doi.org/10.1002/adma.201204877 
  23. F. Klein, B. Jache, A. Bhide, and P. Adelhelm, Phys. Chem. Chem. Phys., 15, 15876 (2013). https://DOI: 10.1039/c3cp52125g 
  24. P. Ge, C. Zhang, H. Hou, B. Wu, L. Zhou, S. Li, T. Wu, J. Hu, L. Mai, and X. Ji, Nano Energy, 48, 617 (2018). https://doi.org/10.1016/j.nanoen.2018.04.018 
  25. Q. Zhou, L. Liu, Z. Huang, L. Yi, X. Wang, and G. Cao, J. Mater. Chem. A, 4, 5505 (2016). https://doi.org/10.1039/c6ta01497f 
  26. Y. Xiao, S. H. Lee, and Y. K. Sun, Adv. Energy Mater., 7, 1601329 (2017). https://doi.org/10.1002/aenm.201601329 
  27. Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S. X. Dou, and W. Sun, Adv. Funct. Mater., 27, 1702317 (2017). https://doi.org/10.1002/adfm.201702317 
  28. Z. Hu, Q. Liu, S. L. Chou, and S. X. Dou, Adv. Mater., 29, 1700606 (2017). https://doi.org/10.1002/adma.201700606 
  29. K. Zhang, M. Park, L. Zhou, G. H. Lee, W. Li, Y. M. Kang, and J. Chen, Adv. Funct. Mater., 26, 6728 (2016). https://doi.org/10.1002/adfm.201602608 
  30. C. Tang, X. Wei, X. Cai, Q. An, P. Hu, J. Sheng, J. Zhu, S. Chou, L. Wu, and L. Mai, ACS Appl. Mater. Interfaces, 10, 19626 (2018). https://doi.org/10.1021/acsami.8b02819 
  31. Y. Pan, X. Cheng, L. Gong, L. Shi, Y. Deng, and H. Zhang, J. Mater. Chem. A, 6, 18967 (2018). https://doi.org/10.1039/C8TA07790H 
  32. Z. Deng, H. Jiang, and C. Li, Small, 14, 1800148 (2018). https://doi.org/10.1002/smll.201800148 
  33. H. Zhang, I. Hasa, and S. Passerini, Adv. Energy Mater., 8, 1702582 (2018). https://doi.org/10.1002/aenm.201702582 
  34. Y. Liang, W. H. Lai, Z. Miao, and S. L. Chou, Small, 14, 1702514 (2018). https://doi.org/10.1002/smll.201702514 
  35. Y. Lu, Y. Lu, Z. Niu, and J. Chen, Adv. Energy Mater., 8, 1702469 (2018). https://doi.org/10.1002/aenm.201702469 
  36. M. S. Balogun, Y. Luo, W. Qiu, P. Liu, and Y. Tong, Carbon, 98, 162 (2016). https://doi.org/10.1016/j.carbon.2015.09.091 
  37. Q. Wang, C. Zhao, Y. Lu, Y. Li, Y. Zheng, Y. Qi, X. Rong, L. Jiang, X. Qi, Y. Shao, D. Pan, B. Li, Y. S. Hu, and L. Chen, Small, 13, 1701835 (2017). https://doi.org/10.1002/smll.201701835 
  38. H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang, H. Wang, N. Zhao, Y. Zheng, C. Du, Z. Dai, Q. Yan, and J. Xu, Energy Stor. Mater., 10, 48 (2018). https://doi.org/10.1016/j.ensm.2017.08.006 
  39. W. Li, S. Hu, X. Luo, Z. Li, X. Sun, M. Li, F. Liu, and Y. Yu, Adv. Mater., 29, 1605820 (2017). https://doi.org/10.1002/adma.201605820 
  40. Y. Fang, X. Y. Yu, and X. W. Lou, Adv. Mater., 30, 1706668 (2018). https://doi.org/10.1002/adma.201706668 
  41. Y. Liu, X. Y. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, and X. W. D. Lou, Joule, 2, 725 (2018). https://doi.org/10.1016/j.joule.2018.01.004 
  42. J. Liu, P. Kopold, C. Wu, P. A. van Aken, J. Maier, and Y. Yu, Energy Environ. Sci., 8, 3531 (2015). https://doi.org/10.1039/C5EE02074C 
  43. J. H. Bang and K. S. Suslick, Adv. Mater., 22, 1039 (2010). https://doi.org/10.1002/adma.200904093 
  44. C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, and C. Sanchez, Adv. Mater., 23, 599 (2011). https://doi.org/10.1002/adma.201001410 
  45. Y. J. Hong, M. Y. Son, and Y. C. Kang, Adv. Mater., 25, 2279 (2013). https://doi.org/10.1002/adma.201204506 
  46. D. S. Jung, Y. N. Ko, Y. C. Kang, and S. B. Park, Adv. Powder Technol., 25, 18 (2014). https://doi.org/10.1016/j.apt.2014.01.012 
  47. Y. Lu, N. Zhang, Q. Zhao, J. Liang, and J. Chen, Nanoscale, 7, 2770 (2015). https://doi.org/10.1039/c4nr06432a 
  48. Y. Zhu, S. H. Choi, X. Fan, J. Shin, Z. Ma, M. R. Zachariah, J. W. Choi, and C. Wang, Adv. Energy Mater., 7, 1601578 (2017). https://doi.org/10.1002/aenm.201601578 
  49. P. Nie, G. Xu, J. Jiang, H. Dou, Y. Wu, Y. Zhang, J. Wang, M. Shi, R. Fu, and X. Zhang, Small Methods, 2, 1700272 (2018). https://doi.org/10.1002/smtd.201700272 
  50. B. Vertruyen, N. Eshraghi, C. Piffet, J. Bodart, A. Mahmoud, and F. Boschini, Materials, 11, 1076 (2018). https://doi.org/10.3390/ma11071076 
  51. Y. Liang, H. Tian, J. Repac, S. C. Liou, J. Chen, W. Han, C. Wang, and S. Ehrman, Energy Stor. Mater., 13, 8 (2018). https://doi.org/10.1016/j.ensm.2017.12.021 
  52. A. B. D. Nandiyanto and K. Okuyama, Adv. Powder Technol., 22, 1 (2011). https://doi.org/10.1016/j.apt.2010.09.011 
  53. W. Y. Teoh, R. Amal, and L. M-dler, Nanoscale, 2, 1324 (2010). https://doi.org/10.1016/j.apt.2010.09.011 
  54. R. Strobel and S. E. Pratsinis, J. Mater. Chem., 17, 4743 (2007). https://doi.org/10.1039/b711652g 
  55. Y. Wang, Y. Wu, A. Shirazi-Amin, P. Kerns, J. Fee, J. He, L. Jin, R. Maric, and S. L. Suib, ACS Appl. Energy Mater., 2, 2370 (2019). https://doi.org/10.1021/acsaem.8b02110 
  56. J. Leng, Z. Wang, J. Wang, H. H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, and Z. Guo, Chem. Soc. Rev., 48, 3015 (2019). https://doi.org/10.1039/C8CS00904J 
  57. P. Nie, Z. Le, G. Chen, D. Liu, X. Liu, H. B. Wu, P. Xu, X. Li, F. Liu, L. Chang, X. Zhang, and Y. Lu, Small, 14, 1800635 (2018). https://doi.org/10.1002/smll.201800635 
  58. J. S. Cho, J. S. Park, and Y. C. Kang, Nano Res., 10, 897(2017). https://doi.org/10.1007/s12274-016-1346-9 
  59. W. H. Ryu, J. W. Jung, K. Park, S. J. Kim, and I.-D. Kim, Nanoscale, 6, 10975 (2014). https://doi.org/10.1039/c4nr02044h 
  60. Y. Wang, Y. Zhang, J. Shi, X. Kong, X. Cao, S. Liang, G. Cao, and A. Pan, Energy Storage Mater., 18, 366 (2019). https://doi.org/10.1016/j.ensm.2018.08.014 
  61. C. Wu, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu, Adv. Mater., 28, 7276 (2016). https://doi.org/10.1002/adma.201600964 
  62. L. Shen, Y. Wang, F. Wu, I. Moudrakovski, P. A. van Aken, J. Maier, and Y. Yu, Angew. Chem. Int. Ed., 58, 7238 (2019); Angew. Chem. 131, 7316 (2019). https://doi.org/10.1002/anie.201901840 
  63. X. Wang, Y. Chen, Y. Fang, J. Zhang, S. Gao, and X. W. Lou, Angew. Chem., 131, 2701 (2019). https://doi.org/10.1002/ange.201812387 
  64. S. Wang, Y. Fang, X. Wang, and X. W. Lou, Angew. Chem., 131, 770 (2019). https://doi.org/10.1002/ange.201810729 
  65. Y. N. Ko and Y. C. Kang, Carbon, 94, 85 (2015). https://doi.org/10.1016/j.carbon.2015.06.064 
  66. Y. Lu, Q. Zhao, N. Zhang, K. Lei, F. Li, and J. Chen, Adv. Funct. Mater., 26, 911 (2016). https://doi.org/10.1002/adfm.201504062 
  67. G. D. Park and Y. C. Kang, Chem. Eur. J., 22, 4140 (2016). https://DOI:10.1002/chem.201504398 
  68. Y. N. Ko, S. Choi, S. Park, and Y. Kang, Nanoscale, 6, 10511 (2014). https://doi.org/10.1039/C4NR02538E 
  69. Y. N. Ko, S. H. Choi, and Y. C. Kang, ACS Appl. Mater. Interfaces, 8, 6449 (2016). https://doi.org/10.1021/acsami.5b11963 
  70. S. H. Choi, and Y. C. Kang, Nanoscale, 8, 4209 (2016). https://doi.org/10.1039/C5NR07733H 
  71. J. K. Kim, J. H. Kim, and Y. C. Kang, Chem. Eng. J., 333, 665 (2018). https://doi.org/10.1016/j.cej.2017.09.169