DOI QR코드

DOI QR Code

Highly water-soluble diacetyl chrysin ameliorates diabetes-associated renal fibrosis and retinal microvascular abnormality in db/db mice

  • Young-Hee Kang (Department of Food and Nutrition and Nutrition and Korean Institute of Nutrition, Hallym University) ;
  • Sin-Hye Park (Department of Food and Nutrition and Nutrition and Korean Institute of Nutrition, Hallym University) ;
  • Young Eun Sim (Department of Food and Nutrition and Nutrition and Korean Institute of Nutrition, Hallym University) ;
  • Moon-Sik Oh (Department of Food and Nutrition and Nutrition and Korean Institute of Nutrition, Hallym University) ;
  • Hong Won Suh (Department of Pharmacology, College of Medicine, Hallym University) ;
  • Jae-Yong Lee (FrontBio Inc.) ;
  • Soon Sung Lim (Department of Food and Nutrition and Nutrition and Korean Institute of Nutrition, Hallym University)
  • 투고 : 2022.06.14
  • 심사 : 2022.09.20
  • 발행 : 2023.06.01

초록

BACKGROUND/OBJECTIVES: Chronic or intermittent hyperglycemia is associated with the development of diabetic complications. Oxidative stress and inflammation can be altered by hyperglycemia in diverse tissues, including kidneys and eyes, and play a pivotal role in diabetic complications. Our previous studies showed that the water-insoluble 5,7-dihydroxyflvone chrysin effectively combats diabetic damages incurred in diabetic kidneys and retinas. The current study employed the newly-synthesized 5.7-di-O-acetylchrysin, having higher solubility than chrysin, to compare the effects on diabetes-associated renal fibrosis and abnormal retinal neovascularization. MATERIALS/METHODS: In the in vivo study, db/db mice as animal models of type 2 diabetes were orally administrated 10 mg/kg BW diacetylchrysin, daily for 10 weeks. RESULTS: Unlike chrysin, oral administration of 10 mg/kg diacetylchrysin did not lower the blood glucose level and 24 h urine volume in db/db mice. Nevertheless, the urinary albumin excretion was markedly reduced. The administration of diacetylchrysin also diminished the deposition of collagen fibers in diabetic glomeruli and tubules by suppressing the induction of connective tissue growth factor and collagen IV in diabetic kidneys. Supplying diacetylchrysin enhanced the membrane type-1 matrix metalloproteinase (MMP) expression reduced in diabetic kidneys, while the tissue inhibitor of MMP-2 induction was attenuated in diacetylchrysin-challenged diabetic kidneys. In addition, supplementing diacetylchrysin to diabetic mice ameliorated renal injury due to glomerulosclerosis and tubular interstitial fibrosis. Furthermore, the reduced retinal inductions of Zonula occludens-1 and vascular endothelial cadherin in db/db mice were elevated in the retinal tissues of diacetylchrysin-treated animals. Oral administration of diacetylchrysin curtailed the induction of vascular endothelial growth factor (VEGF) and VEGF receptor 2 in db/db mice, ultimately retarding diabetes-associated retinal neovascularization. Additionally, the retinal formation of acellular capillaries with leaky vessels was reduced in diacetylchrysin-treated db/db mice. CONCLUSION: Diacetylchrysin may act as a potent pro-health agent for treating renal fibrosis-associated diabetic nephropathy and retinal neovascularization-associated diabetic retinopathy.

키워드

과제정보

This research was financially supported by FrontBio Inc. and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2021R1A6A1A03044501).

참고문헌

  1. Negre-Salvayre A, Salvayre R, Auge N, Pamplona R, Portero-Otin M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009;11:3071-109.  https://doi.org/10.1089/ars.2009.2484
  2. Gilbert MP. Screening and treatment by the primary care provider of common diabetes complications. Med Clin North Am 2015;99:201-19.  https://doi.org/10.1016/j.mcna.2014.09.002
  3. Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T. Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 2020;18:110-6.  https://doi.org/10.2174/1570161117666190405165151
  4. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020;16:377-90.  https://doi.org/10.1038/s41581-020-0278-5
  5. Park S, Kang HJ, Jeon JH, Kim MJ, Lee IK. Recent advances in the pathogenesis of microvascular complications in diabetes. Arch Pharm Res 2019;42:252-62.  https://doi.org/10.1007/s12272-019-01130-3
  6. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005;28:164-76.  https://doi.org/10.2337/diacare.28.1.164
  7. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010;376:124-36.  https://doi.org/10.1016/S0140-6736(09)62124-3
  8. Adki KM, Kulkarni YA. Potential biomarkers in diabetic retinopathy. Curr Diabetes Rev 2020;16:971-83.  https://doi.org/10.2174/1573399816666200217092022
  9. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev Dis Primers 2019;5:41. 
  10. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol 2007;27:195-207.  https://doi.org/10.1016/j.semnephrol.2007.01.012
  11. Menon MC, Chuang PY, He CJ. The glomerular filtration barrier: components and crosstalk. Int J Nephrol 2012;2012:749010. 
  12. Jefferson JA, Shankland SJ, Pichler RH. Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int 2008;74:22-36. https://doi.org/10.1038/ki.2008.128
  13. Gorriz JL, Martinez-Castelao A. Proteinuria: detection and role in native renal disease progression. Transplant Rev (Orlando) 2012;26:3-13.  https://doi.org/10.1016/j.trre.2011.10.002
  14. Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne) 2013;4:7. 
  15. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 2011;7:684-96.  https://doi.org/10.1038/nrneph.2011.149
  16. Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 2014;124:2299-306.  https://doi.org/10.1172/JCI72267
  17. Arboleda-Velasquez JF, Valdez CN, Marko CK, D'Amore PA. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Curr Diab Rep 2015;15:573. 
  18. Wong TY, Cheung CM, Larsen M, Sharma S, Simo R. Diabetic retinopathy. Nat Rev Dis Primers 2016;2:16012. 
  19. Al-Latayfeh M, Silva PS, Sun JK, Aiello LP. Antiangiogenic therapy for ischemic retinopathies. Cold Spring Harb Perspect Med 2012;2:a006411. 
  20. Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 2015;49:67-81.  https://doi.org/10.1016/j.preteyeres.2015.06.002
  21. Boyer DS, Hopkins JJ, Sorof J, Ehrlich JS. Anti-vascular endothelial growth factor therapy for diabetic macular edema. Ther Adv Endocrinol Metab 2013;4:151-69.  https://doi.org/10.1177/2042018813512360
  22. Zheng HX, Qi SS, He J, Hu CY, Han H, Jiang H, Li XS. Cyanidin-3-glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor β1/Smad expression. J Agric Food Chem 2020;68:4399-410.  https://doi.org/10.1021/acs.jafc.0c00680
  23. Kang MK, Park SH, Choi YJ, Shin D, Kang YH. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J Mol Med (Berl) 2015;93:759-72.  https://doi.org/10.1007/s00109-015-1301-3
  24. Kang MK, Park SH, Kim YH, Lee EJ, Antika LD, Kim DY, Choi YJ, Kang YH. Dietary compound chrysin inhibits retinal neovascularization with abnormal capillaries in db/db mice. Nutrients 2016;8:782. 
  25. Zhou L, Zhang P, Yang G, Lin R, Wang W, Liu T, Zhang L, Zhang J. Solubility of chrysin in ethanol and water mixtures. J Chem Eng Data 2014;59:2215-20.  https://doi.org/10.1021/je5001654
  26. Hwang SH, Kim HY, Zuo G, Wang Z, Lee JY, Lim SS. Anti-glycation, carbonyl trapping and antiinflammatory activities of chrysin derivatives. Molecules 2018;23:1752. 
  27. Zhang A, Huang S. Progress in pathogenesis of proteinuria. Int J Nephrol 2012;2012:314251. 
  28. Zoja C, Abbate M, Remuzzi G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol Dial Transplant 2015;30:706-12.  https://doi.org/10.1093/ndt/gfu261
  29. Capitao M, Soares R. Angiogenesis and inflammation crosstalk in diabetic retinopathy. J Cell Biochem 2016;117:2443-53.  https://doi.org/10.1002/jcb.25575
  30. Kusuhara S, Fukushima Y, Ogura S, Inoue N, Uemura A. Pathophysiology of diabetic retinopathy: the old and the new. Diabetes Metab J 2018;42:364-76.  https://doi.org/10.4093/dmj.2018.0182
  31. Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, Kumar S, Bhatti GK, Reddy PH. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: current therapeutics strategies and future perspectives. Free Radic Biol Med 2022;184:114-34.  https://doi.org/10.1016/j.freeradbiomed.2022.03.019
  32. Zheng S, Huang K, Tong T. Efficacy and mechanisms of oleuropein in mitigating diabetes and diabetes complications. J Agric Food Chem 2021;69:6145-55. https://doi.org/10.1021/acs.jafc.1c01404
  33. Oliveira S, Monteiro-Alfredo T, Silva S, Matafome P. Curcumin derivatives for type 2 diabetes management and prevention of complications. Arch Pharm Res 2020;43:567-81.  https://doi.org/10.1007/s12272-020-01240-3
  34. Khan M, Liu H, Wang J, Sun B. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: a comprehensive review. Food Res Int 2020;130:108933. 
  35. Rodriguez ML, Perez S, Mena-Molla S, Desco MC, Ortega AL. Oxidative stress and microvascular alterations in diabetic retinopathy: future therapies. Oxid Med Cell Longev 2019;2019:4940825. 
  36. Gowd V, Kang Q, Wang Q, Wang Q, Chen F, Cheng KW. Resveratrol: evidence for its nephroprotective effect in diabetic nephropathy. Adv Nutr 2020;11:1555-68.  https://doi.org/10.1093/advances/nmaa075
  37. Catrina SB, Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 2021;64:709-16.  https://doi.org/10.1007/s00125-021-05380-z
  38. Lee EJ, Kang MK, Kim DY, Kim YH, Oh H, Kang YH. Chrysin inhibits advanced glycation end products-induced kidney fibrosis in renal mesangial cells and diabetic kidneys. Nutrients 2018;10:882.  https://doi.org/10.3390/nu10070882
  39. Ravindran S, Munusamy S. Renoprotective mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease. J Cell Physiol 2022;237:1182-205.  https://doi.org/10.1002/jcp.30621
  40. Alicic RZ, Cox EJ, Neumiller JJ, Tuttle KR. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat Rev Nephrol 2021;17:227-44.  https://doi.org/10.1038/s41581-020-00367-2
  41. Abbate M, Zoja C, Corna D, Rottoli D, Zanchi C, Azzollini N, Tomasoni S, Berlingeri S, Noris M, Morigi M, et al. Complement-mediated dysfunction of glomerular filtration barrier accelerates progressive renal injury. J Am Soc Nephrol 2008;19:1158-67.  https://doi.org/10.1681/ASN.2007060686
  42. Osaadon P, Fagan XJ, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond) 2014;28:510-20.  https://doi.org/10.1038/eye.2014.13
  43. Tan Y, Fukutomi A, Sun MT, Durkin S, Gilhotra J, Chan WO. Anti-VEGF crunch syndrome in proliferative diabetic retinopathy: a review. Surv Ophthalmol 2021;66:926-32.  https://doi.org/10.1016/j.survophthal.2021.03.001
  44. Sulaiman RS, Basavarajappa HD, Corson TW. Natural product inhibitors of ocular angiogenesis. Exp Eye Res 2014;129:161-71.  https://doi.org/10.1016/j.exer.2014.10.002
  45. Stompor-Goracy M, Bajek-Bil A, Machaczka M. Chrysin: perspectives on contemporary status and future possibilities as pro-health agent. Nutrients 2021;13:2038. 
  46. Zhu ZY, Wang WX, Wang ZQ, Chen LJ, Zhang JY, Liu XC, Wu SP, Zhang YM. Synthesis and antitumor activity evaluation of chrysin derivatives. Eur J Med Chem 2014;75:297-300. https://doi.org/10.1016/j.ejmech.2013.12.044