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ABSTRACT

BACKGROUND/OBJECTIVES: Curcumin is a well-known phytochemical with anti-
inflammatory effects. Heat shock protein (HSP) 70, an intracellular chaperone, inhibits 
proinflammatory signaling activation. Although curcumin has been shown to induce HSP70 
expression in various cell types, whether HSP70 mediates the anti-inflammatory effects of 
curcumin in mature adipocytes remains unclear.
MATERIALS/METHODS: To assess the role of HSP70 in regulating the anti-inflammatory 
response to curcumin in adipocytes, fully differentiated 3T3-L1 adipocytes were treated with 
curcumin, lipopolysaccharide (LPS), and/or the HSP70 inhibitor pifithrin-μ (PFT-μ). The 
expression levels of HSP70 and proinflammatory cytokines were then measured.
RESULTS: Curcumin upregulated HSP70 expression at both protein and mRNA levels and 
attenuated LPS-induced Il6, Ptx3, and Ccl2 mRNA upregulation. PFT-μ tended to exacerbate 
the LPS-induced upregulation of Il6, Ptx3, Ccl2, and Tnfa mRNA expression. However, on 
curcumin pretreatment, the tendency of PFT-μ to upregulate LPS-induced proinflammatory 
cytokine expression decreased or disappeared.
CONCLUSION: These results indicate that HSP70 is involved in the regulation of 
inflammatory responses but may not be crucial for the anti-inflammatory effects of curcumin 
in 3T3-L1 adipocytes.
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INTRODUCTION

Systemic chronic inflammation is strongly linked to the development of diabetes, 
cardiovascular diseases, neurodegenerative diseases, and multiple types of cancers [1]. 
Inflammation-associated chronic diseases are estimated to account for approximately 63% of 
all-cause mortality worldwide [2]. Nutritional factors, such as the quantity of overall dietary 
intake and specific nutrients or phytochemicals, have been identified as causes or suppressors 
of chronic inflammation [2]. Many previous studies have reported that excessive dietary intake 
or the intake of saturated fatty acids can induce inflammation and result in metabolic stress 
[3]; however, phytochemicals, which provide color, flavor, smell, texture, and other sense-
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engaging properties to plants [4], exert health beneficial effects by reducing the incidence of 
inflammation-associated chronic diseases in humans and various animal models [5].

Curcumin, a phenolic acid isolated from the herb Curcuma longa [5], is a well-known 
phytochemical with anti-inflammatory effects [6]. It has been found to downregulate the 
production of diverse proinflammatory cytokines, including tumor necrosis factor (TNF)-α, 
monocyte chemotactic protein (MCP)-1, and interleukin (IL)-6, by suppressing nuclear factor 
kappa-B (NF-κB) activation [6,7]. The anti-inflammatory effects of curcumin contribute 
to the prevention of metabolic dysregulation [8]. In multiple clinical trials, curcumin 
supplementation has been found to improve metabolic parameters, including fasting glucose 
and insulin, serum triacylglycerol (TAG), high-density lipoprotein (HDL), and low-density 
lipoprotein (LDL) levels [9-11].

On the other hand, curcumin has been reported to increase the expression of heat shock 
protein (HSP) 70 in various cell types, including carcinoma, leukemia, and epithelial cells 
[12-14]. HSP70 is involved in the regulation of cellular responses to inflammatory conditions 
[15-17]. As a ribosome-associated chaperone, HSP70 controls unfolded protein response and 
endoplasmic reticulum stress [15]. Moreover, as an inhibitor of NF-κB essential modulator, 
HSP70 suppresses NF-κB signaling activation by inhibiting the phosphorylation of inhibitory 
κB (IκB) and nuclear translocation of NF-κB, thereby downregulating the expression of 
proinflammatory cytokines [16-18].

Although curcumin is one of the most investigated phytochemicals in terms of its anti-
inflammatory effects and underlying mechanisms, whether curcumin upregulates the 
expression of HSP70 in mature adipocytes and whether the induction of HSP70 is crucial for 
regulating the anti-inflammatory response of mature adipocytes to curcumin remain unclear. 
Therefore, this study aimed to assess the role of HSP70 in regulating the effects of curcumin 
on NF-κB signaling and inflammation using fully differentiated 3T3-L1 adipocytes.

MATERIALS AND METHODS

Cell culture and treatment
3T3-L1 fibroblasts (American Type Culture Collection, Manassas, VA, USA) were grown 
in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 4,500 mg/L glucose and 
L-glutamine (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% bovine calf serum 
(Corning, Corning, NY, USA) and 1% antibiotic antimycotic solution at 37°C in the presence 
of 5% CO2. Two days after confluence, adipogenic differentiation was initiated using DMEM 
with 10% fetal bovine serum, 1.7 μM insulin, 1 μM dexamethasone, and 500 μM 3-isobutyl-
1-methylxanthine (Sigma-Aldrich). After 2 days, the medium was changed to DMEM with 
10% FBS and 1.7 μM insulin. After another 2 days, the medium was changed to DMEM with 
10% FBS. When the cells had a spherical shape and were filled with lipid droplets, they were 
considered fully differentiated.

As previous studies have reported that curcumin concentrations ≤ 100 μM do not induce cell 
toxicity in adipocytes or adipose-derived mesenchymal stem cells [19,20], fully differentiated 
3T3-L1 adipocytes were pretreated with 0.1–100 μM curcumin (Cayman, Ann Arbor, MI, USA) 
dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich) for 24 h. The control was pretreated 
with DMSO. After curcumin or DMSO pretreatment, the cells were treated with 10 μg/mL 
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lipopolysaccharide (LPS; Sigma-Aldrich) for 30 min or 3 h and/or 1 μM pifithrin-μ (PFT-μ, 
HSP70 inhibitor; Cayman) for 24 h.

Western blot analysis
Proteins were extracted from 3T3-L1 adipocytes using RIPA lysis buffer containing a protease 
inhibitor cocktail (Sigma-Aldrich), phenylmethylsulfonyl fluoride, and Na3VO4. The protein 
concentration was determined using a bicinchoninic acid assay (Sigma-Aldrich). Protein 
lysates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 
transferred to a nitrocellulose membrane. After blocking, the membrane was incubated with 
rabbit anti-HSP70, rabbit anti-p-IκB, rabbit anti-IκB, and mouse anti-β-actin (Cell Signaling, 
Danvers, MA, USA). Following this, the membrane was incubated with horseradish 
peroxidase (HRP)-conjugated anti-mouse or anti-rabbit IgG (Cell Signaling) and imaged 
using Immobilon Western Chemiluminescent HRP Substrate (Millipore, Burlington, MA, 
USA). The band density was normalized relative to that of β-actin.

Quantitative real-time polymerase chain reaction (PCR)
Total RNA was extracted from 3T3-L1 cells using TRIzol (Ambion, Austin, TX, USA) and 
reverse transcribed to cDNA using M-MLV reverse transcriptase (Promega, Madison, 
WI, USA). Quantitative real-time PCR was performed on a Bio-Rad iQ5 system (Bio-Rad, 
Hercules, CA, USA) using RT2 SYBR Green Fluor qPCR Mastermix (Qiagen, Valencia, 
CA, USA). The mRNA levels of Hspa1a, Nfkb1, Il6, Ptx3, Ccl2, and Tnfa were quantified and 
normalized relative to those of 18S rRNA. Fold changes in gene expression were calculated 
using the ΔΔCt method. Specific primer sequences used are shown in Table 1.

Statistical analysis
One-way or 2-way analysis of variance with Duncan’s post hoc test was performed to determine 
significant differences induced by treatment with curcumin, LPS, and/or PFT-μ. Data are 
presented as the means ± standard error of means and were analyzed using SAS 9.4 (SAS 
Institute Inc., Cary, NC, USA). Differences were considered statistically significant at P < 0.05.

RESULTS

Curcumin upregulates HSP70 expression
To determine whether curcumin induces HSPs, fully differentiated 3T3-L1 adipocytes were 
treated with 0.1–100 μM curcumin for 24 h. Curcumin upregulated the level of HSP70 in a dose-
dependent manner, and its effects on HSP70 induction were significant at 100 μM (Fig. 1A).  
Although 75 μM curcumin did not have a significant effect on HSP70 induction, more 
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Table 1. Primer sequences used for quantitative real-time polymerase chain reaction
Gene Forward primer Reverse primer
18S ATC CCT GAG AAG TTC CAG CA CCT CTT GGT GAG GTC GAT GT
Hspa1a ACG TGG GCT TTA TCT TCC CTG AAC AAA TCA CAT CAG CGG GG
Nfkb1 GCG TAC ACA TTC TGG GGA GT GTT AAT GCT CCT GCG AAA GC
Il6 TTC CTC TCT GCA AGA GAC TTC C TGA AGT CTC CTC TCC GGA CTT
Ptx3 CTG CCC GCA GGT TGT GAA GGC TTT GAC CCA AAT GCA AGT
Ccl2 CAC TCA CCT GCT GCT ACT CA GCT TGG TGA CAA AAA CTA CAG C
Tnfa AGC CCC CAG TCT GTA TCC TT CTC CCT TTG CAG AAC TCA GG
18S, 18S ribosomal RNA; Hspa1a, heat shock protein family A (heat shock protein 70) member 1A; Nfkb1, nuclear 
factor kappa B subunit 1; Il6, interleukin 6; Ptx3, pentraxin 3 (also known as tumor necrosis factor-inducible gene 
14 protein); Ccl2, C-C motif chemokine ligand 2 (also known as monocyte chemoattractant protein-1); Tnfa, tumor 
necrosis factor α.
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consistent upregulation of HSP70 was noted on treatment with 75 μM curcumin than on 
treatment with 100 μM curcumin (data not shown). Therefore, 75 μM curcumin was used for 
treatment in subsequent experiments. On the other hand, curcumin did not affect HSP90 
expression (Fig. 1B).

LPS induces inflammation and reverses curcumin-induced HSP70 expression
When 3T3-L1 adipocytes pretreated with 75 μM curcumin were treated with 10 μg/mL LPS for 
30 min, the curcumin-induced upregulation of HSP70 expression decreased (Fig. 2A). LPS 
treatment increased the phosphorylation (P = 0.011; Fig. 2B) and degradation (P = 0.050; Fig. 2C) 
of IκB. Curcumin-pretreated cells tended to have a higher level of IκB (P = 0.079; Fig. 2C).

Curcumin attenuates LPS-induced inflammation
To determine the effects of curcumin and LPS on NF-κB target gene expression, 3T3-L1 
adipocytes pretreated with 75 μM curcumin were treated with 10 μg/mL LPS for 3 h. As the 
nuclear translocation of NF-κB and transcription of NF-κB target genes take time after IκB 
phosphorylation and degradation, the cells were treated with LPS for longer in this experiment. 
Curcumin upregulated the mRNA expression of the HSP70-encoding gene Hspa1a; however, 
LPS did not suppress this upregulated gene expression. LPS tended to upregulate the mRNA 
expression of Nfkb1 (P = 0.058), and curcumin pretreatment suppressed the LPS-induced 
upregulation of NF-κB target genes, including Il6, Ptx3, and Ccl2, at the mRNA level (Fig. 3).

HSP70 inhibition tends to exacerbate LPS-induced inflammation
To determine whether HSP70 induction is crucial for the anti-inflammatory effects of curcumin 
in 3T3-L1 adipocytes, cells were co-treated with 1 μM of the HSP70 inhibitor PFT-μ and 10 μg/
mL LPS after pretreatment with 75 μM curcumin. The cells co-treated with PFT-μ and LPS 
tended to have higher mRNA expression levels of Il6, Ptx3, Ccl2, and Tnfa than those treated with 
LPS only. However, no effect of PFT-μ was noted in the curcumin-pretreated cells (Fig. 4).
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Fig. 1. Effects of curcumin on heat shock protein levels. (A) HSP70; (B) HSP90. Fully differentiated 3T3-L1 adipocytes were treated with curcumin dissolved in 
dimethyl sulfoxide for 24 h. The protein levels were determined by Western blot with normalization relative to β-actin. Data are presented as means ± standard 
error of mean (n = 3). 
HSP, heat shock protein. 
a,bDifferent superscripts indicate significant differences at P < 0.05 by Duncan’s multiple comparison test. If a group has a common superscript with another 
group, it means they are not statistically different.
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group, it means they are not statistically different.
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As it is possible that the effects of curcumin were too strong and masked the effects of PFT-μ 
on HSP70 inhibition, a similar experiment was conducted using a lower concentration of 
curcumin (7.5 μM). Although the difference was not statistically significant, in the cells 
pretreated with 7.5 μM curcumin, PFT-μ and LPS co-treatment resulted in slightly higher 
mRNA expression levels of Il6 and Ptx3 than LPS treatment only (Fig. 5).

DISCUSSION

In this study, curcumin was found to suppress the expression of LPS-induced 
proinflammatory cytokines in fully differentiated 3T3-L1 adipocytes. The anti-inflammatory 
effects of curcumin have been reported in various experimental models and humans [7,21-
25]. In 3T3-L1 murine adipocytes, curcumin suppressed the TNF-α-induced upregulation 
of Il1b, Il6, and Tnfa mRNA expression [7]. In diet-induced or genetically obese mice, 
curcumin reduced macrophage infiltration in the white adipose tissue and NF-κB activity 
in the liver [21,22]. In an atherosclerotic mouse model, curcumin administration alleviated 
atherosclerotic lesions; lowered plasma cholesterol, TAG, and LDL levels; and increased the 
HDL level [23]. In prediabetic or type 2 diabetic patients, curcumin intervention lowered 
fasting blood glucose, glycated hemoglobin, serum nonesterified fatty acid, and serum TAG 
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levels and improved pancreatic β-cell function [24,25]. These data indicate that the anti-
inflammatory effects of curcumin can lower the risk of atherosclerosis and insulin resistance.

Curcumin specifically upregulated HSP70 expression at both mRNA and protein levels in 
3T3-L1 adipocytes. The expression level of HSP70 was found to be negatively correlated with 
the degree of inflammation [26], and HSP70 induction by drugs ameliorated symptoms of 
inflammatory diseases in animal models [27,28]. Patients with steatohepatitis and fibrosis had 
lower levels of HSP70 and HSF1, a transcription factor of HSP70, in the visceral adipose tissue 
and liver than those with steatosis [26]. Geranylgeranylacetone, an HSP70-inducing drug, could 
recover the HSP70 level and HSF1 induction and improve the glucose clearance rate in diabetic 
monkeys [27]. In addition, 17-allylamino-demethoxygeldanamycin, another HSP70-inducing 
drug, increased neuronal survival and reduced brain edema in rats with brain injury [28].

Although LPS treatment for 30 min downregulated the protein expression level of HSP70, LPS 
treatment for 3 h did not change the mRNA expression level of Hspa1a. As HSP70 protein levels 
were found to be positively correlated with Hspa1a mRNA levels in multiple studies that assessed 
HSP70 expression at both protein and mRNA levels [29,30], this inconsistency may be attributed 
to the difference in treatment times. LPS treatment for more than 60 min was found to upregulate 
HSP70 expression in various in vitro models [31-33]. LPS activated HSF1 by phosphorylation within 
5 min of treatment; this effect persisted for 30 min and returned to baseline by 60 min [33].
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To determine the role of HSP70 inhibition in the anti-inflammatory response of 3T3-
L1 adipocytes to curcumin, cells were co-treated with PFT-μ and LPS after curcumin 
pretreatment. PFT-μ is known to inhibit HSP70 by disrupting the association between HSP70 
and its substrate proteins [34]. To determine the optimal concentration, curcumin-pretreated 
3T3-L1 adipocytes were treated with 0.1–200 μM PFT-μ (Supplementary Fig. 1). Compared 
with other concentrations, 1 μM PFT-μ slightly upregulated the mRNA expression of Hspa1a 
(albeit not significantly so) and significantly augmented the LPS-induced mRNA upregulation 
of Ccl2. Therefore, 1 μM PFT-μ was used for HSP70 inhibition in subsequent experiments.

When 3T3-L1 adipocytes were not pretreated with curcumin or were pretreated with a very 
low concentration of curcumin (7.5 μM), treatment with 1 μM PFT-μ tended to augment 
the LPS-induced upregulation of proinflammatory cytokine-encoding genes, including Il6, 
Ptx3, and Ccl2; however, it did not alter the mRNA expression of Hspa1a. Previous studies 
have reported inconsistent data about the effects of PFT-μ on HSP70 expression [35,36]. 
The expression of HSP70 was upregulated by 40 μM PFT-μ [35] but not by 8 μM PFT-μ [36]; 
however, both concentrations of PFT-μ significantly increased cell apoptosis, which is 
mediated by HSP70 inhibition. These results suggest that a low concentration of PFT-μ is 
enough to inhibit HSP70.

Although HSP70 inhibition by PFT-μ did not significantly reverse the anti-inflammatory 
effects of curcumin (75 μM) in this study, previous studies have reported that the genetic 
suppression of Hspa1a or Hsf1 could reduce the anti-inflammatory effects of other 
phytochemicals. Celastrol, a triterpenoid quinone methide present in thunder god vine root 
extracts, could upregulate the expression level of HSP70 in a time- and dose-dependent 
manner [37], while Hspa1a siRNA could reverse the celastrol-induced downregulation of 
NF-κB p65 DNA-binding activity and IL-6 secretion in human retinal pigment epithelial 
cells [38]. Zerumbone, a sesquiterpene present in subtropical ginger, also induced HSP70 
expression in a dose-dependent manner [39], and Hsf1 siRNA reversed the zerumbone-
induced downregulation of Il1b and Nos2 mRNA expression in RAW 264.7 macrophages [40]. 
These data indicate that HSP70 induction is crucial for the anti-inflammatory effects of 
celastrol and zerumbone.

A limitation of this study is that the effect of PFT-μ on the disruption of HSP70 binding to its 
substrate proteins was not determined. Moreover, to reach a strong conclusion, it would be 
helpful to assess the expression of the markers at both mRNA and protein levels, to increase the 
number of replicates of the experiments, or to include a positive control, such as HSP70-inducing 
drugs. However, despite these limitations, this study provides some novel evidence regarding the 
necessity of HSP70 for the anti-inflammatory effects of curcumin in mature adipocytes.

In summary, curcumin upregulated the expression of HSP70 and attenuated the LPS-
induced upregulation of proinflammatory cytokine-encoding genes in fully differentiated 
3T3-L1 adipocytes; however, the inhibition of HSP70 by PFT-μ did not significantly curb 
the anti-inflammatory effects of curcumin. This implies that HSP70 induction, involved in 
the regulation of anti-inflammatory responses, may not be the main mechanism by which 
curcumin exerts its anti-inflammatory effects. However, based on the results of previous 
studies [38,40], it is still possible that the genetic suppression of HSP70 expression could 
reduce the effects of curcumin. Therefore, additional studies with Hspa1a knockdown 
or knockout are warranted to clarify the role of HSP70 in the regulation of the anti-
inflammatory effects of curcumin.
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SUPPLEMENTARY MATERIAL

Supplementary Fig. 1
Effects of HSP70 inhibition on curcumin-pretreated 3T3-L1 adipocytes. (A) Hspa1a; (B) Ccl2. 
CUR for 24 h; LPS for 3 h; PFT-μ for 2 h; (n = 3). Two-way analysis of variance with Duncan’s 
post hoc test.

Click here to view
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