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GENERALIZED HEXAGONS EMBEDDED IN

METASYMPLECTIC SPACES

Sebastian Petit and Hendrik Van Maldeghem

Abstract. We consider thick generalized hexagons fully embedded in

metasymplectic spaces, and we show that such an embedding either hap-
pens in a point residue (giving rise to a full embedding inside a dual

polar space of rank 3), or happens inside a symplecton (giving rise to a
full embedding in a polar space of rank 3), or is isometric (that is, point

pairs of the hexagon have the same mutual position whether viewed in

the hexagon or in the metasymplectic space–these mutual positions are
equality, collinearity, being special, opposition). In the isometric case, we

show that the hexagon is always a Moufang hexagon, its little projective

group is induced by the collineation group of the metasymplectic space,
and the metasymplectic space itself admits central collineations (hence,

in symbols, it is of type F4,1). We allow non-thick metasymplectic spaces

without non-thick lines and obtain a full classification of the isometric
embeddings in this case.

1. Introduction

Generalized hexagons play a somewhat isolated but rather special role in
the theory of spherical buildings because of its crystallographic Weyl group
and split type (over each field there exists a simple algebraic group of abso-
lute–that is, with a split torus–type G2), but yet it does not arise as a residue
in a higher rank spherical building. The latter can also be said about metasym-
plectic spaces (geometries related to weak spherical buildings of type F4). It is
therefore valuable and interesting to see such geometries embedded in bigger
ambient geometries: this not only helps to understand better the embedded
geometry, but also the ambient one. For example, in [6, 7], metasymplectic
spaces fully embedded in the minuscule and the long root geometry of type E6,
and the long root geometry of type E7, are all classified. In general, generalized
hexagons are too sparse structures to say anything reasonable when they are
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embedded in a higher rank geometry. For example, there exists a full classifi-
cation of fully embedded generalized quadrangles in projective space, but for
hexagons we are far from such a classification. Only when the embedding sat-
isfies extra conditions, called flatness in [14] and regularity in [13], one is able
to classify (but a lot of fully embedded Moufang hexagons do not satisfy these
conditions). Also, the generalized hexagons appearing in the conclusions of the
classifications in [13, 14] are the duals of the long root hexagons, showing that
projective spaces are not the natural home for the long root hexagons (that is,
the Moufang hexagons, where the duality class is chosen such that they allow
central elations, see below for precise definitions). Hence it makes sense to
consider embeddings of hexagons into long root geometries. Since the natural
homes of the split buildings of type G2 are the buildings of type D4, and since
the long root geometry of type D4 is a so-called metasymplectic space, it is a
natural problem to consider (full) embeddings of hexagons into metasymplectic
spaces. That problem has two main parts: first one would like to show that
an embedding automatically leads to a nice hexagon, here a Moufang one, and
secondly, one would like to know which Moufang hexagons exactly appear as
an embedded one. In this paper we are concerned with the first part and leave
the second part to a sequel.

There is another reason why the embedding problem of hexagons in meta-
symplectic spaces is exceptional compared to other embeddings. All metasym-
plectic spaces and all generalized hexagons are so-called root filtration spaces,
see [3, 4], whereas for the other exceptional types, the notions of root filtration
space and long root geometry coincide. The reason is that the Coxeter dia-
grams of types G2 and F4 have a symmetry that does not come from one of the
underlying Dynkin diagram. Hence we have a richer family of geometries than
just the long root ones, and this is true for both the embedded geometries as
well as for the ambient geometries. The fact that some are not long root, but
behave very much like them causes some challenges to overcome.

As already mentioned, the sparsity of generalized hexagons could be respon-
sible for wild type of embeddings, or for our inability to prove structural results.
For example, a tool that is often used in embedding questions is to prove restric-
tions on the way how subspaces embedd. However, subspaces of generalized
hexagons are particularly unmanageable. As a comparison, subspaces of gen-
eralized quadrangles only come in three well known flavours: partial ovoids,
partial line pencils and full subquadrangles. Nevertheless, we are able to show
that fully embedded hexagons in metasymplectic spaces also come in three
different flavours, two of which refer back to the older question of embedding
hexagons in projective spaces. Loosely speaking the first part of our Main
Result says:

Main Result 1.1. A thick generalized hexagon fully embedded in a metasym-
plectic space is either embedded in a classical residue, or it is isometrically em-
bedded, that is, points at maximal distance in the hexagon are also at maximal
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distance in the metasymplectic space, and points at distance 2 in the hexagon
are also at “special” distance 2 in the metasymplectic space.

The “classical residues” in the above refer to classical polar spaces and dual
polar spaces. In the latter case, the hexagon is also isometrically embedded
in a slightly broader sense. In the former case, a classification seems far away
since it is not yet known whether the “natural” embedding of the split Cayley
hexagon in a parabolic quadric of rank 3 is the only one in such quadric; in
fact the uniqueness for the smallest example has been disproved by Coolsaet
[5]. So we consider it out of scope of the present paper to further nail down
the situation in these residues. About the isometric case, however, we can say
more. The second part of our Main Result is, again loosely speaking:

Main Result 1.2. If a thick generalized hexagon is isometrically and fully
embedded in a metasymplectic space, then the hexagon is Moufang, it inherits
its little projective group from the collineations group of the metasymplectic
space, and both the hexagon and metasymplectic space are long root geometries,
that is, in both the points are the centres of central elations.

An explicit list of all possibilities (in the more general case of lax embedding
instead of a full one), will be determined in a subsequent paper.

Concerning the proofs, we will be using a lot of properties of mainly meta-
symplectic spaces. We summarise these in a separate section (see Section 3). In
particular we will need the notion of an equator geometry and an extended equa-
tor geometry in an arbitrary Lie incidence geometry of type F4,4. These notions
were defined in [6] in the split case, so we will need to extend the definitions
and properties (limiting ourselves to the things we need in our proof).

We now get down to precise definitions and statements of the Main Results.

2. Preliminaries and statement of the Main Results

We assume the reader is familiar with the basics of the theory of Tits build-
ings, cf. [16], and also with (classical) polar spaces. The present paper is
concerned with the geometries arising from spherical buildings of types G2 and
F4. These geometries are known in the literature as generalized hexagons and
(thick) metasymplectic spaces, respectively. In order to fix notation and some
common ground, we introduce abstract point-line geometries.

Point-line geometries. A point-line geometry ∆ is a pair (X,L ) with L ⊆
2X . The members of X are called the points, usually denoted with lower case
Latin letters, those of L are the lines, usually denoted with upper case Latin
letters. We will always deal with the situation, where two points are contained
in at most one line, and lines have constant size at least 3. In general, a thick line
is a line containing at least 3 points, and similarly for thick points. Points on a
common line are called collinear ; if two points x, y are collinear we write x ⊥ y.
If the joining line is unique, we denote it by xy. The set of points collinear to
a given point x is x⊥ and for Y ⊆ X we define Y ⊥ = {x ∈ X |x ⊥ y,∀y ∈ Y }.
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Two subsets Y1, Y2 of X are said to be collinear, in symbols also Y1 ⊥ Y2, if
each point of either is collinear to every point of the other. The collinearity
graph of ∆ is the graph with vertices the points of ∆, adjacent when collinear.
The distance δ(x, y) between two points x, y ∈ X is the distance between these
points in the collinearity graph. The incidence graph is the bipartite graph on
X ∪ L , where x ∈ X is adjacent to L ∈ L if x ∈ L. A subspace Y of ∆ is a
subset of points with the property that, if some line L ∈ L has at least two
points in common with Y , then L ⊆ Y . A convex subspace is a subspace Y
with the additional property that, whenever x, y ∈ Y , then all points on any
shortest path between x and y in the collinearity graph are contained in Y .
We will frequently view a (convex) subspace as a point-line geometry, where
the lines are inherited from ∆. Since X is a (convex) subspace of ∆, and
since obviously the intersection of two (convex) subspaces is again a (convex)
subspace, the intersection of all (convex) subspaces containing a common set
S ⊆ X is a (convex) subspace, and we say that S generates ⟨S⟩ (the intersection
of all subspaces containing S), and the hull of S is cl(S) (the intersection of all
convex subspaces containing S). Concerning the notation ⟨S⟩, we occasionally
omit the braces for sets, and use commas instead of union symbols, e.g., for
x ∈ X and S ⊆ X, we write ⟨x, S⟩ for ⟨{x} ∪ S⟩.

Embedded geometries. Let Γ = (X,L ) and ∆ = (Y,M ) be two point-line
geometries. Then we say that Γ is fully embedded in ∆ if X ⊆ Y and L ⊆ M .
We will sometimes omit the word ‘fully’. Note that, if Γ is embedded in ∆,
it is not necessarily true that X is a subspace of Y ; in most cases it is not.
If ∆ is the point-line geometry arising from a projective space of dimension n
over an associative division ring K, denoted by PG(n,K), then we say that Γ
admits a projective embedding. Also, if the embedding of Γ in ∆ is such that
the distance of any two points of Γ measured in the collinearity graph of Γ is
the same as the distance between them measured in the collinearity graph of
∆, then we say that the embedding is isometric, or Γ is isometrically embedded
in ∆.

Generalized hexagons. A point-line geometry Γ = (X,L ) is a generalized
hexagon if the incidence graph has diameter 6 and girth 12. If all point and
lines are thick, then we say that Γ is a thick generalized hexagon. If we call
a line pencil the set Px of lines containing a fixed point x, then the dual of
∆ is the geometry Γ∗ = (L , {Px |x ∈ X}). It is also a generalized hexagon.
The distance between its points L,M ∈ L is denoted by δ∗(L,M). For lines
L,M ∈ L at distance 3 in the dual, we denote by R(L,M) the set of points
of Γ collinear to some point of L and to some point of M (and the symbol R
stands for “regulus’). A collineation of Γ is a permutation of X that induces a
permutation of L . A collineation is called central if it pointwise fixes Γ1(c) for
some point c ∈ X, and Γ∗

1(L) for each L ∈ L with c ∈ L. The point c is called
the centre of the central collineation, which is also sometimes called a central
elation. For the (original) definition of Moufang hexagon we refer the reader to
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Figure 1. The Coxeter diagram of type F4.

[17, §4.2] or [18, §5.2.1]. We content ourselves with mentioning an equivalent,
though seemingly ostensibly stronger condition which, however, suffices for our
purposes. Let Uc be the group of central elations with centre c ∈ X. If, up
to duality, for every point c ∈ X, and some lines L,M at distance 3 in the
dual and such that |c⊥ ∩ L| = |c⊥ ∩ M | = 1, the group Uc acts transitively
on R(L,M) \ {c}, then we say that Γ is a Moufang hexagon. If the former
condition is satisfied for every point c, then we say that the Moufang hexagon
is of type G2,1; if it is satisfied for every point in the dual, then we say that
Γ is a Moufang hexagon of type G2,2. The definition of Moufang hexagon we
just gave is justified by Ronan’s characterization of Moufang hexagons [11].
The little projective group of a Moufang hexagon is the group generated by
all central elations or dual central elations (which are sometimes called axial
elations).

Dual polar spaces of rank 3. We will also need the definition of a dual
polar space of rank 3. Given a polar space ∆ of rank 3, the associated dual
polar space is the geometry ∆∗ with point set the set of planes of ∆, and line
set the set of plane pencils (a plane pencil is the set of planes through a given
line). This is a geometry of which the collinearity graph has diameter 3, just
as is the case for generalized hexagons.

Metasymplectic spaces. The geometries of importance in the present paper
are the so-called “Lie incidence geometries” of types F4,1 and F4,4. We now
explain how these arise. Consider an abstract (weak) building Ω of type F4,
viewed as a simplicial complex, see [16]. Label the vertices of its (Coxeter)
diagram as in Fig. 1. Let X be the set of vertices of type 1, and let L consist
of the sets of vertices of type 1 on a common simplex together with a fixed
vertex of type 2. Then ∆(X,L ) is a metasymplectic space, called of type F4,1,
where the 1 in the index refers to the type in Ω of the points of Γ. In this
paper, we are only concerned with metasymplectic spaces having thick lines,
that is, |L| ≥ 3 for every L ∈ L , hence we assume this throughout. This is
equivalent to assuming that all residues of simplices of type {3, 4} correspond
to (proper) projective planes. Using [12], one sees that either Ω is thick, or ∆
arises from the line Grassmannian of a polar space of rank 4 (with thick lines).

In our definition above, we could also have considered the vertices of type 4 as
points of a metasymplectic geometry, in view of the symmetry of the diagram.
Nevertheless, the underlying Dynkin diagram is not symmetric, and it will
turn out to be convenient for us to indeed distinguish between metasymplectic
spaces of types F4,1 and F4,4. For this paper, it suffices to define the types as
follows:
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Figure 2. The Dynkin diagram of type F4 with Bourbaki labeling

(i) whenever Ω is not thick (that is, it is a line Grassmannian of a polar space
of rank 4), we assume that the (thick) projective plane residues are the
ones of simplices of type {3, 4}, hence Γ is then of type F4,1;

(ii) whenever some projective plane residue arises from a non-commutative
alternative division ring, then we assume that it conforms to a residue of
a simplex of type {1, 2}. Hence, here the corresponding metasymplectic
spaces of type F4,1 have projective planes over commutative fields, whereas
the corresponding metasympectic spaces of type F4,4 (taking vertices of
type 4 as points) have projective planes over non-commutative division
rings;

(iii) whenever all projective plane residues are defined over a field, then we
choose the vertices of type 1 so that the polar space of rank 3 obtained
as residue of a simplex of type 1 arises either from a non-degenerate
alternating form in a vector space of dimension 6–or is a subspace of such–
or from a non-degenerate Hermitian form in a vector space of dimension
6.

Hence the numbering is such that the coordinatizing structure A of the projec-
tive plane corresponding to types 3, 4 (residues of simplices of type {1, 2}) is
a quadratic alternative division algebra over the coordinatizing field K of the
projective plane corresponding to types 1, 2; we have depicted this in Fig. 2.
This conforms to the Bourbaki labelling of the vertices of the Dynkin diagram,
except if A is a inseparable field extension of K in characteristic 2 (then one
cannot distinguish the end vertices since in that case K is an inseparable field
extension of A2, the field of squares of A). We denote the corresponding build-
ing by F4(K,A), where A should be given as an algebra over K, and not just as
an abstract division ring independent of K. The corresponding metasymplectic
spaces of type F4,1 will be denoted F4,1(K,A) and those of type F4,4 will be
denoted F4,4(K,A). With this notation, it is sensible to denote the line Grass-
mannian of the hyperbolic quadric of Witt index 4 in PG(7,K), usually denoted
by D4,2(K), as F4,1(K, 1), putting A formally equal to the trivial algebra {o⃗} of
one element.

Main Results. We are now in a position to state our main results more
precisely.

Theorem 2.1. Let Γ = (P,L ) be a thick generalized hexagon, fully embedded
in a metasymplectic space ∆ = (X,M ). Let ∆ have type F4,i, i ∈ {1, 4}, and
let Ω be the underlying building of type F4. Then exactly one of the following
holds.
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(i) Γ is contained in a convex subspace of ∆ isomorphic to a polar space of
rank 3 and corresponding to the residue of a vertex of type 5− i in Ω.

(ii) Γ is contained in p⊥ for some point p ∈ X \ P . This yields an isometric
embedding of Γ in the dual polar space of rank 3 associated with the residue
of p in Ω.

(iii) Γ is a Moufang hexagon of type G2,1 and is isometrically embedded in ∆.
Also, ∆ is of type F4,1.

In the case that Ω is not thick, we can classify the isometric case, see Sec-
tion 4.6 and Proposition 4.17 therein.

We now comment on the three possibilities above in the thick case.
Case (i) relates to an old open problem in the theory of generalized hexagons.

The generalized hexagon G2,2(K) related to a triality of type Iid (see [15]) of the
hyperbolic quadric of Witt index 4 in PG(7,K), also known as the split Cayley
hexagon (see [18]) embeds naturally into a parabolic polar space of rank 3, that
is, a quadric in 6-dimensional projective space with equation X1X2 +X3X4 +
X5X6 = x2

0, see [15]. The conjecture is that this embedding is unique, whenever
the lines of the hexagon contain at least four points; for the smallest case, where
lines have size 3, there is a counterexample, see [5]. So a classification in Case
(i) would mean a complete solution of the conjecture.

We do not know too much about Case (ii), except that it exists. Indeed, it
is described in [8]. In view of that paper, one is tempted to conjecture that it
does not occur in characteristic distinct from 2, but we have no clue. It would
certainly need techniques very different from the ones in the present paper.
Note also that the above reference describes an embedding of G2,2(K) into a
dual symplectic polar space of rank 3, that is, the corresponding embedding in
∆ has the property that Γ sits inside p⊥ ∩ q⊥⊥ for some point q opposite p. We
do not know whether there are examples in p⊥ not having the latter property.

Case (iii) is most interesting. Every metasymplectic space of type F4,1 con-
tains at least one fully embedded thick generalized hexagon via the full embed-
dings

G2,1(K) ⊆ D4,2(K) = F4,1(K, 1) ⊆ F4,1(K,K) ⊆ F4,1(K,A)

for every quadratic alternative division algebra A over K, where G2,1(K) denotes
the dual of G2,2(K) introduced before. In a sequel to the present paper, we
intend to determine the precise list of isometrically but not necessarily fully
embedded hexagons in metasymplectic spaces (this just means that the lines
of the hexagon are subsets of lines of the metasymplectic space). The reason
for abandoning the assumption of fullness is that it provides more interesting
examples (but this can only be done in conjunction with the assumption of
being isometric).

In the same vein, one could also relax the condition of thickness of the
generalized hexagon. However, this case is completely solved. Indeed, since
a non-thick hexagon with thick lines is contained in every Moufang hexagon
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of type G2,1, such a non-thick hexagon is embedded in every metasymplectic
space of type F4,1. It is easy to see that this embedding is unique. However,
more surprisingly, the same holds in the dual. Denote by 2PG(2,A) the double
of the projective plane PG(2,A) in the (dual) sense of [18], that is, the points
of the geometry 2PG(2,A) are the incident point-line pairs of PG(2,A) and the
set of flags with common point or line is a typical line of 2PG(2,A). Then it is
shown in [9]:

Proposition 2.2. The metasymplectic space F4,4(K,A), with A a quadratic al-
ternative division algebra over K, always contains a unique, up to isomorphism,
fully embedded non-thick generalized hexagon isomorphic to 2PG(2,A).

Structure of the paper. The paper is organized as follows. In the next
section, we gather the properties of metasympletic spaces that we need in our
proof. In particular, we have to generalize the notion of extended equator
geometry, introduced in [6] for F4,4(K,K), to all metasymplectic spaces of type
F4,4. This is new and will have independent interest. The actual proof of
Theorem 2.1 is then presented in Section 4.

3. Metasymplectic spaces: an introduction and properties

3.1. Properties of metasymplectic spaces

Let Γ = F4(K,A) be a building of type F4 over K with associated quadratic
alternative division algebra A. For i = 1, 4, we let Γi be the metasymplectic
parapolar space F4,i(K,A). This means that we have a set of points, a set of
lines, a set of planes and a set of symplecta and these are such that each line,
each plane and each symplecton is a proper convex subset of the set of points.
In particular, Γi is a partial linear space. The planes are projective planes when
endowed with the lines of Γ they contain; the lines and planes contained in a
symplecton render it a polar space of rank 3 which we denote by B3,1(K,A) if
i = 1, and by C3,1(A,K) if i = 4. The opposition relation in Γ ([16], Chapter 7)
acts on the types as the identity. The basic properties of Γ are the following,
stated as facts. As noted on page 80 of [18], these can be proved using the
diagram of type F4; they also follow from [2].

Fact 3.1. The symplecta, planes and lines of Γ through a given point p, en-
dowed with the natural incidence relation, form a polar space ResΓi

(p) isomor-
phic to C3,1(A,K) if i = 1, and B3,1(K,A) if i = 4, where the points of that
polar space are the symplecta through p, the lines are the planes through p, and
the planes are the lines through p.

In particular, it follows that the isomorphism class of the geometry ResΓi
(p)

does not depend on p. It is usually called the point residual of Γi. Another
consequence is the following.

Corollary 3.2. Every singular subspace of Γi is contained in some symplecton,
and hence is either a point, a line or a projective plane.
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Fact 3.3. Let x and y be two points of Γi. Then, precisely one of the following
situations occurs.

(0) x = y;
(1) there is a unique line incident with both x and y. In this case, we call

x and y collinear. We denote the unique line joining them by xy and
write x ⊥ y;

(2) there is a unique symplecton incident with both x and y. In this case,
there is no line incident with both x and y, and we call x and y
symplectic, or say that {x, y} is a symplectic pair, or say that x is
symplectic to y. We denote the unique symplecton by ξ(x, y) and write
x ⊥⊥ y;

(3) there is a unique point z collinear with both x and y. In this case, we
call x and y special, or say that {x, y} is a special pair, or say that x
is special to y, and denote this by x ⋊⋉ y. The point z is denoted by
c(x, y). For every pair {x, z} of collinear points, there is a point y such
that c(x, y) = z;

(4) there is no point collinear with both x and y. In this case, x and y are
opposite. For every point x there is at least one point y opposite x.

Moreover, each of these possibilities occurs.

Fact 3.4. Let x be a point and ξ a symplecton of Γi. Then precisely one of
the following situations occurs.

(0) x ∈ ξ;
(1) the set of points of ξ collinear with x is a line L. Every point y of ξ \L

which is collinear with each point of L is symplectic to x and ξ(x, y)
contains L. Every other point z of ξ (i.e., every point z of ξ collinear
with a unique point z′ of L) is special to x and c(x, z) = z′ ∈ L. We
say that x and ξ are close;

(2) there is a unique point u of ξ symplectic to x and ξ ∩ ξ(x, u) = {u}.
All points v of ξ collinear with u are special to x and c(x, v) /∈ ξ. All
points of ξ not collinear with u are opposite x. We say that x and ξ
are far.

Moreover, each of these possibilities occurs.

Fact 3.5. The intersection of two different symplecta ξ and ζ is either empty,
or a point, or a plane and each of these occurs.

(1) If ξ ∩ ζ is a point x, then every point in ξ \ x⊥ is far from ζ;
(2) If ξ ∩ ζ is a plane π, then points x ∈ ξ and y ∈ ζ are special to each

other if and only if x⊥ ∩ π ̸= y⊥ ∩ π.

The next result reviews all possible mutual positions of a point and a line.
It follows from including the line in a symplecton and then apply Fact 3.4.

Fact 3.6. Let x be a point and L a line. Then exactly one of the following
occurs.

(1) x ∈ L;
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(2) x ⊥ L;
(3) x ⊥ p ∈ L for exactly one point p, and x ⊥⊥ q for all q ∈ L \ {p};
(4) x⋊⋉p ∈ L for exactly one point p, and x is opposite q for all q ∈ L\{q};
(5) x ⊥ p ∈ L for exactly one point p, and x⋊⋉ q for all q ∈ L \ {p}, with

evidently c(x, q) = p;
(6) x ⊥⊥ p ∈ L for exactly one point p, and x⋊⋉ q for all q ∈ L \ {p}, with

c(x, q) = a ⊥ L for a unique point a (independent of q);
(7) x⋊⋉ p for every p ∈ L. In this case there exists a unique line M such

that p 7→ c(x, p) is a bijection from L to M .

A corollary to this is the following.

Corollary 3.7. Let π and π′ be two planes intersecting in a point x. Let L
and L′ be lines in π and π′, respectively, not containing x. Then ⊥⊥ defines a
bijection between L and L′ if and only if there exists a point p ∈ L special to
all points of L′ except for one, to which it is symplectic.

Finally, Lemma 2(v) of [4] states:

Fact 3.8. If a ⊥ b ⊥ c ⊥ d is a path in ∆ with a ⋊⋉ c and b ⋊⋉ d, then a is
opposite d.

3.2. The equator and extended equator geometries

We now define the equator and extended equator geometries, see also [10],
Proposition 6.26, and [6], Section 4.2.

Definition (Equator Geometry). Let p, q be two opposite points of Γi. Let Sp

denote the family of symplecta containing p. Then, by Fact 3.4, each member
of Sp contains a unique point which is symplectic to q. The set of all such
points is called the equator geometry of the pair {p, q}. It is usually denoted by
E(p, q). Using Fact 3.4(2), it is easy to see that E(p, q) = p⊥⊥ ∩ q⊥⊥ and hence
this definition is symmetric in p, q.

The following was proved in Proposition 6.26 of [10] for Γ4 = F4,4(K,K), but
the proof remains valid for Γ4 = F4,4(K,A), with A any quadratic alternative
division algebra. The reason is the following. In a polar space C3,1(A,K)
(and we now use the symbol ⊥ for collinearity in this polar space), taking two
opposite lines L,M yields a set L⊥ ∩ M⊥ which coincides with {x, y}⊥⊥ for
each pair {x, y} in L⊥ ∩M⊥. We call such a set a hyperbolic line and denote
it by h(x, y).

Proposition 3.9. Let p, q be two opposite points of Γ4. Then, for any sym-
plectic pair {u, v} of points of E(p, q), the hyperbolic line h(u, v) is contained in
E(p, q). The geometry of points and hyperbolic lines of E(p, q) is the point-line
geometry of a polar space, which we also denote by E(p, q), isomorphic to any
point residual of Γ. A natural isomorphism from E(p, q) to ResΓ4

(p) is induced
by the map φp,q that sends a point x ∈ E(p, q) to the symplecton ξ(x, p).
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We need the following property of polar spaces of rank at least 3.

Lemma 3.10. Any geometric hyperplane G′ of any geometric hyperplane G of
a polar space Π of rank at least 3 contains two non-collinear points.

Proof. See [6], Lemma 4.2.3. □

We will also need the following similar statement, a proof of which is easy
and left to the reader.

Lemma 3.11. Any geometric hyperplane of a polar space Π of rank at least 3
contains two opposite lines.

We observe one more property of E(p, q).

Lemma 3.12. Let p, q be opposite points of Γi, and x, y ∈ E(p, q). Then either
x = y, or {x, y} is a symplectic pair, or x is opposite y.

Proof. See [6], Lemma 4.2.4. □

We are now ready to define the extended equator geometry for opposite
points p, q in Γ4. The reason that we cannot do it for Γ1 is that in the symplecta
of Γ4, the common perp L⊥ ∩M⊥ of a pair of lines {L,M} in generic position
is determined by two of its points (since it represents a line in an ambient
projective space), while this is not true for Γ1 (except if A is an inseparable
field extension of K in characteristic 2 or K = A in characteristic 2).

Definition (Extended Equator Geometry). Let p, q be two opposite points of
Γ. Then define the point set

Ê(p, q) =
⋃

{E(x, y) : x, y ∈ E(p, q), x opposite y}.

Note that, by Proposition 3.9 and Lemma 3.12, E(p, q) contains pairs of op-

posite points. So, Ê(p, q) is nonempty. The set Ê(p, q), endowed with all the
hyperbolic lines in it, is called the extended equator geometry for p, q. Further,

p, q and E(p, q) are contained in Ê(p, q).

Standing hypothesis. From now on until the end of this subsection, we

fix a pair of opposite points p, q of Γ4 and write E := E(p, q) and Ê := Ê(p, q).

The goal is to show that, endowed with all hyperbolic lines contained in it, Ê
is the unique (up to isomorphism) polar space in which each point residue is
isomorphic to B3,1(K,A), and which we shall logically denote by B4,1(K,A).
The proof in Subsection 4.2 of [6] uses at various points special properties of
hyperbolic lines that are not true in general, so we have to provide alternative
arguments, and we choose to write down a complete proof for readability rea-
sons. The proof will turn out to be slightly shorter and more efficient than the
one in [6].

We first prove that Ê does not contain collinear or special pairs of points
and that it is closed under taking hyperbolic lines through symplectic pairs of
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its points. Then, we argue that the geometry of its points and hyperbolic lines
is the point-line geometry of a polar space of type B4,1(K,A).

Lemma 3.13. Let c ∈ Ê \ E be arbitrary and let h(u, v) be an arbitrary
hyperbolic line contained in E, u, v ∈ E, u ̸= v. Then at least one of the two
following properties hold:
(i) The point c and h(u, v) are contained in a common equator geometry

E(x, y) for some opposite points x, y ∈ E;
(ii) all points of h(u, v) are symplectic to c.

Proof. Assume first that at least two points of h(u, v) are symplectic to c. If
c belongs to ξ(u, v), then (ii) holds. Fact 3.4 implies that c is close to ξ(u, v).
Set L = c⊥ ∩ ξ(u, v), then L ⊆ u⊥ ∩ v⊥. Since h(u, v) = {u, v}⊥⊥ ⊆ L⊥, we
deduce (ii).

Hence, since hyperbolic lines have at least three points, we may assume that
none of u and v are symplectic to c. Let a, b ∈ E be opposite and such that
c ∈ E(a, b). Set Q = a⊥⊥ ∩ b⊥⊥ ∩ E. Then Q has the structure of a generalized
quadrangle (endowed with the hyperbolic lines), because it is the set of points
collinear with two opposite points in a rank 3 polar space.

Assume initially that u ∈ Q. If v ∈ Q, then take (x, y) = (a, b) to obtain
(i), so we may assume v and b are opposite. Since both c and Q belong to
E(a, b), each hyperbolic line in Q contains at least one point symplectic to c.
Select two such hyperbolic lines L1 and L2 containing u and let zi ∈ Li be
a point symplectic to c, i = 1, 2. Now we argue in the polar space E: the
hyperbolic line h(b, zi) contains a unique point xi symplectic to v, and since u
is symplectic to both b and zi, it is also symplectic to xi. Moreover, x1 and x2

are opposite. hence we can set (x, y) = (x1, x2) and (i) holds.
Now assume both u and v do not belong toQ. Note that c⊥⊥∩Q is a geometric

hyperplane of Q and so there exist opposite points z, z′ in Q symplectic to c.
If z and z′ are both symplectic to both u and v, then we obtain (i) by setting
(z, z′) = (x, y). Hence we may assume without loss of generality that u is not
symplectic to z. If u is not symplectic to b either, then we can replace b by the
unique point on h(z, b) symplectic to u. Hence we may assume that u ⊥⊥ b.
Let u′ be the unique point on h(b, u) symplectic to a. If u′ were symplectic
to c, then Fact 3.4(1) and the definition of hyperbolic line would imply that
c ⊥⊥ u, a contradiction. Hence the previous paragraph implies that h(u′, u) and
c belong to a common equator geometry E(x′, y′) for certain opposite points

x′, y′ ∈ E. But now since u ∈ x′⊥⊥ ∩ y′
⊥⊥
, the previous paragraph yields the

assertion (i). □

This implies the following.

Corollary 3.14. Let x ∈ Ê. Then the set of points of E symplectic to or equal
to x is a geometric hyperplane of E, viewed as a polar space, or coincides with
it.
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Proof. Let L be a line of the polar space E (so L is a hyperbolic line contained

in E). If x ∈ E, then the assertion is obvious. Now let x ∈ Ê \ E. Then,
since equator geometries are polar spaces when endowed with the hyperbolic
lines they contain, Lemma 3.13 implies that either one or all points of L are
symplectic to x. This completes the proof of the corollary. □

We now reach our first main goal.

Lemma 3.15. Let x, y ∈ Ê, x ̸= y. Then either {x, y} is a symplectic pair,
or x is opposite y. If, moreover, {x, y} is a symplectic pair, then h(x, y) is

completely contained in Ê.

Proof. By Lemma 3.10 and Corollary 3.14, we can find two opposite points
a, b ∈ E(p, q) symplectic to both x and y. Hence x, y ∈ E(a, b) and so the first
assertion follows from Lemma 3.12. If, moreover, x and y are symplectic, then

h(x, y) ⊆ E(a, b) ⊆ Ê, by Proposition 3.9 and the definition of Ê. □

We can now pin down the exact structure of the extended equator geome-
tries.

Proposition 3.16. The extended equator geometry Ê(p, q), endowed with the
hyperbolic lines contained in it, is a polar space isomorphic to B4,1(K,A).

Proof. We check the Buekenhout-Shult axioms of a polar space as given in [1].
We repeat these axioms for the convenience of the reader.
(1) Every (hyperbolic) line contains at least 3 points. This holds by Lemma

3.15 and the fact that a hyperbolic line contains at least 3 points.
(2) There is no point collinear with every other point. By definition of

Ê(p, q), any point x ∈ Ê(p, q) is contained in an equator geometry, which
is, by Proposition 3.9, isomorphic to B3,1(K,A), in which x has an op-
posite point.

(3) One-or-all axiom, i.e., either exactly one or all points of a given line are
collinear with a given point. This requires some extra arguments com-
pared to Proposition 4.2.11 of [6]. Let h(a, b) be an arbitrary hyperbolic

line, and z an arbitrary point (all in Ê). As before, there exist opposite
points x, y ∈ E such that h(a, b) ⊆ E(x, y). In x⊥⊥ ∩ y⊥⊥ ∩E we find, us-
ing Lemma 3.13, two opposite points u, v symplectic to z (as a geometric
hyperplane of a generalized quadrangle always contains opposite points).

Then h(a, b) ⊆ E(x, y) and z ∈ Ê(x, y) and the assertion follows from
Lemma 3.13 with (x, y) taking over the role of (p, q).

(4) Finite rank, i.e., every nested family of singular subspaces is finite. Again
by Proposition 3.9, the residue in the point p is isomorphic to the polar

space induced on the set of points of Ê(p, q) symplectic to both p and q.

Since in the whole of Γ, this is E(p, q), it is also E(p, q) in Ê. Hence the
residue at p is a polar space isomorphic to B3,1(K,A) and as such has

rank 3. We conclude that the rank of Ê(p, q) is 4 and hence finite.
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The argument above implies that Ê(p, q) is a polar space isomorphic to
B4,1(K,A), as the residue in at least one point is isomorphic to B3,1(K,A).
The proposition is proved. □

Just as in [6] one shows that Ê(a, b) = Ê(p, q) for every pair {a, b} of opposite
points of Ê(p, q). Also the results in Subsection 5.3 of [6] remain valid. We

summarise these now. Let us call a maximal singular subspace of Ê, viewed as
a polar space, a hyperbolic solid, as in [6].

Proposition 3.17. (1) If a point is collinear to at least two points of Ê,
then it is collinear to precisely all points of a hyperbolic solid.

(2) For every hyperbolic solid Σ in Ê, there exists a unique point β(Σ)
collinear to all points of Σ.

(3) For every hyperbolic plane π in Ê, the set

{β(Σ) |π ⊆ Σ is a hyperbolic solid in Ê}

is a line of Γ4.

(4) Two hyperbolic solids Σ1 and Σ2 of Ê share a unique point x if and only
if β(Σ1) and β(Σ2) form a special pair of points of Γ4, and in this case
c(β(Σ1), β(Σ2)) = x.

(5) Two hyperbolic solids Σ1 and Σ2 of Ê are disjoint if and only if β(Σ1)
and β(Σ2) are opposite points of Γ4.

(6) The set T̂ (p, q) of points β(Σ), with Σ ranging through all hyperbolic

solids of Ê, with all induced lines, is isomorphic to the dual polar space
B4,4(K,A) corresponding to the polar space B4,1(K,A).

Finally, we provide some more information about the polar spaces B4,1(K,A),
which we will need in Section 4.5, in particular in Proposition 4.16. Recall that
the 1-spaces of a vector space V are the points of a projective space PG(V ) and
V is called the underlying vector space. Each projective space of dimension at
least 3 arises in this manner.

Proposition 3.18. Let A be a quadratic alternative division algebra over K,
with A not an inseparable field extension if the characteristic of K is 2 (this also
excludes A = K in characteristic 2). Set d := dimK A. Then the polar space
B4,1(K,A) admits an embedding as a quadric in PG(7 + d,K) and there exists
a non-degenerate symmetric bilinear form β on the underlying vector space V
such that for each point p = ⟨v⟩ of B4,1(K,A), v ∈ V , the hyperplane spanned
by the lines of B4,1(K,A) through p corresponds to the (null set of the) linear
form βv : V → K : w 7→ β(v, w).

Proof. It follows from 10.2 of [16] and the fact that B3,1(K,A) is a point residue
in B4,1(K,A) that B4,1(K,A) is embedded in PG(7+d,K) and has the mentioned
property with respect to the vector space V := K4×A×K4 and the symmetric
bilinear form (the linearization of the quadratic form given in 10.2 of [16])
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β : V × V → K :

((x−4, . . . , x−1, X0, x1, . . . , x4), (y−4, . . . , y−1, Y0, y1, . . . , y4))

7→ X0Y 0 + Y0X0 + x−4y4 + x−3y3 + · · ·+ x4y−4,

where A → A : X 7→ X is the standard involution in A. It only remains to show
that β is non-degenerate. It is routine to see that this is equivalent to showing
that, whenever for some given Y ∈ A we have XY + Y X = 0 for all X ∈ A,
then Y = 0. To see that this indeed holds, first set X = 1 to obtain Y +Y = 0,
hence Y −1XY = X for all X ∈ A. This implies that the standard involution is
actually an automorphism, hence A is commutative (whence associative, too).
But then the last equality reduces to X = X for all X ∈ A, implying that
K = A and that the characteristic of K is equal to 2 (in view of the earlier
derived property Y + Y = 0). But that contradicts our assumptions on A. □

4. Proof of the main results

4.1. A lemma on generalized hexagons

The following very general lemma will be used a number of times, although
in the respective cases an appropriately weaker version would suffice. But for
reasons of unification and convenience, we will nevertheless apply the lemma
in such situation.

Lemma 4.1. Let Γ = (P,L ) be a generalized hexagon. Let ∗ be a binary
symmetric relation between pairs of points of Γ at mutual distance 3. Suppose
that ∗ has the property that, whenever p ∗ q for p, q ∈ P , δ(p, q) = 3, and
z ∈ Γ1(p)∩ Γ3(q), then q ∗ z. Then x ∗ y for each pair of points of Γ at mutual
distance 3.

Proof. Let p, q ∈ P be such that δ(p, q) = 3 and p ∗ q. First let q′ ∈ Γ3(p) be
such that δ(q, q′) ≤ 2. We claim that p ∗ q′. Indeed, this follows directly from
our assumptions if q′ ⊥ q. So we may assume δ(q, q′) = 2. Denote by L and L′

the lines containing q and q′, respectively, and mutually intersecting, say in the
point c = Γ1(q) ∩ Γ1(q

′). If c ∈ Γ3(p), then applying twice our assumption, we
first obtain c ∗ p and then q′ ∗ p. So we may assume δ(p, c) = 2. Select p′ ⊥ p
arbitrarily in Γ3(c) ∩ Γ3(q), which is very well possible since lines contain at
least three points. By applying our assumption to q, we obtain p′ ∗ q. Applied
to p′, we obtain c ∗ p′. Denoting an arbitrary point of L′ \ {c} at distance 3
from p′ by q′′, we deduce similarly p′ ∗ q′′. Now our assumption applied to q′′

yields q′′ ∗ p, and subsequently applied to p, it finally yields q′ ∗ p.
Clearly, we deduce from the claim in the precious paragraph that all points

of Γ at distance 3 from p are in relation ∗ to p. Now let r, s ∈ P be arbitrary
but at distance 3 from each other. Select t ∈ Γ3(p) ∩ Γ3(r). Letting t, p play
the role of p, q, respectively, in the above, we find t ∗ r. Now letting r, t play
the role of p, q in the above argument, we deduce r ∗ s. □
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We now start our analysis of how a thick generalized hexagon Γ = (X,L )
can be embedded in a metasymplectic space ∆ = (X,M ). We refer to the
mutual distance of points in Γ using the numerical distance, and to the one
in ∆ using the names collinear, special, symplectic, opposite. We begin with
putting rather severe restrictions on the mutual positions of the points of Γ in
∆, and gradually lift these until we cover all possible cases.

4.2. Only collinear point pairs

Lemma 4.2. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in the
metasymplectic space ∆ = (X,M ). Then there exists at least one pair of points
of Γ that is not collinear in ∆.

Proof. If all point pairs of Γ were collinear in ∆, then P is contained in a
singular subspace of ∆, hence a plane. But then disjoint lines of Γ nevertheless
meet nontrivally, a contradiction. □

4.3. No special point pairs

Lemma 4.3. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that no pair of points of Γ is
special in ∆. Then no pair of points of Γ is opposite in ∆ and there exists a
pair of points of Γ at distance 3 that is symplectic in ∆.

Proof. Suppose for a contradiction that there is a pair p, q ∈ P of opposite
points. Let L ∈ L contain q. Since L ∈ M , there exists, by Fact 3.6, a
(unique) point on it special to p, contradicting our assumptions.

Now by Lemma 4.2, there exists at least one pair p, q ∈ P of symplectic
points. Suppose that δ(p, q) = 2 (it is either 2 or 3 and if it is 3, there is
nothing to prove anymore). Let L ∈ L be such that q ∈ L and L contains
points at distance 3 from p. If all members of L \ {q} are collinear to p, then
so is q, a contradiction. Hence by Fact 3.6, L \ {q} contains a point symplectic
to p and that point is at distance 3 from p. □

We are now working towards Lemma 4.1. However, it will turn out we will
use it for the dual of Γ.

Lemma 4.4. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that no pair of points of Γ is
special in ∆. If p, q ∈ P is a pair of points of Γ at distance 3 that is symplectic
in ∆, then Γ1(p) ⊆ ξ(p, q).

Proof. Suppose for a contradiction that some point r ∈ Γ1(p) is not contained
in ξ(p, q). Then r is close to ξ(p, q) and since p is not collinear to q, Fact 3.4
implies that r and q are special, a contradiction. □

Since we cannot guarantee that points of Γ at distance 3 from each other
are symplectic in ∆, we cannot use Lemma 4.1 directly. So we try the dual.
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Lemma 4.5. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that no pair of points of Γ
is special in ∆. Then every pair of lines L,M ∈ L with δ∗(L,M) = 3 is
contained in a unique symp ξ of ∆. Also, every line of Γ intersecting L is
contained in ξ.

Proof. Let L,M ∈ L be such that δ∗(L,M) = 3. If L ⊥ M in ∆, then L
and M are contained in a singular 3-space, a contradiction. Hence there exists
at least one point pair p ∈ L, q ∈ M that is symplectic. If δ(p, q) = 2, then,
as in the proof of Lemma 4.3, we can re-choose q ∈ M such that δ(p, q) = 3
and p and q are still symplectic. Then Lemma 4.4 ensures that L,M ⊆ ξ(p, q).
Suppose for a contradiction that some line N ∈ L intersecting L, say in the
point r, lies outside ξ(p, q). Pick s ∈ N \ {r}. Then s is close to ξ(p, q) and so
K := s⊥∩ξ(p, q) is a line of ∆. Since Γ does not contain special pairs, all points
of Γ lying in ξ(p, q) are collinear to K. Let α be the plane of ξ(p, q) through K
containing p, and β the one containing q. Obviously α ̸= β. By Lemma 4.4 all
points of Γ1(q) belong to ξ(p, q); hence they all belong to β, as q /∈ α (otherwise
this would contradict q ⊥⊥ p). Select a point q′ on a line M ′ ̸= M through q,
with M ′ ∈ L , δ∗(L,M ′) = 3 and q′ /∈ K. Then there exists a point p′ ∈ L\{r}
at distance 3 from q′. Since p′ ⊥⊥ q′, Lemma 4.4 again implies that every line
J ∈ L through q′ is contained in ξ(p′, q′) = ξ(p, q). But such a line J is then
also contained in β, leading to a triangle in Γ, a contradiction. □

We have now everything in place to apply the dual of Lemma 4.1 with ∗ being
the relation “being contained in the symp ξ”, with ξ the symp containing two
arbitrarily chosen lines L,M of Γ at mutual distance 3. We directly conclude:

Lemma 4.6. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that no pair of points of Γ is
special in ∆. Then P ⊆ ξ for a unique symp ξ of ∆.

We can now move on to the next case, where we do have special point pairs,
but no opposite ones.

4.4. There are special point pairs but no opposite ones

Lemma 4.7. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that no pair of points of Γ is
opposite in ∆. Assume also that some point p ∈ P is special to some point
q ∈ P . Then there exists a point q′ ∈ P special to p and such that δ(p, q′) = 3.

Proof. If δ(p, q) = 3, then we set q′ = q. So we may assume δ(p, q) = 2. Let
L ∈ L be a line trough q not containing a point of Γ at distance 1 from p.
Then Fact 3.6 yields a point q′ ∈ L \ {q} special to p. □

Lemma 4.8. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that no pair of points of Γ is
opposite in ∆. Assume also that some point p ∈ P is special to some point
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q ∈ P at distance 3 from p. Then no member of Γ3(p) ∩ Γ1(q) is collinear or
symplectic to p.

Proof. Clearly no point q′ of Γ3(p) ∩ Γ1(q) is collinear to p as this would yield
two distinct paths of length 2 joining p and the unique point of Γ2(p) on qq′

(and then we would have a collinear, a symplectic and a special point to p on
qq′, contradicting Fact 3.6).

Assume for a contradiction that z ∈ Γ3(p) ∩ Γ1(q) is symplectic to p. Set
qz = M . Then every point of M \ {z} is special to p. Set r = M ∩ Γ2(p)
and s = Γ1(p) ∩ Γ1(r). It follows from Fact 3.6 that s ⊥ M . Let L ∈ L be
any line through p not containing s. We claim that r is special to each point
on L. Indeed, since r ⋊⋉ p, the point r is special to each point of L, except
possibly one, which is then collinear to r or symplectic to it. If some point of
L were collinear to r, then there would be two paths of length 2 joining p with
r, contradicting p⋊⋉ r. Hence we may assume that r ⊥⊥ t for some t ∈ L. By
looking at r and L, Fact 3.6 tells us that t ⊥ s and by Corollary 3.7 ⊥⊥ defines
a bijection between L and M . Then again Fact 3.6 implies that s is the unique

point in t⊥ ∩ t′
⊥

(in ∆) for each t′ ∈ M \ {r}. This contradicts the fact that
there is a unique path of length 2 in Γ from t to a unique point of M \ {r}.
The claim is proved.

This also shows that s and t are symplectic (indeed, they cannot be special
as s⋊⋉ t and r⋊⋉p would imply r opposite t by Fact 3.8). Now we choose t ∈ L
such that it belongs to Γ2(z). Suppose for a contradiction that ξ(z, p) = ξ(s, t).
Since t is not collinear to s, and p is not collinear to z, no point of pt is collinear
to all points of sz. Hence, since both lines are contained in a common polar
space, collinearity defines a bijection between sz and pt. It follows from Fact 3.4
that each point of ⟨r, s, z⟩ \ sz is special to each point of pt with centre on sz.
Select a ∈ rz \{r, z}. Then the unique point b of Γ1(a) at distance 1 from some
point of L is such a centre and hence b ∈ sz. But then the hexagon line ab
intersects rs, a contradiction. Hence ξ(z, p) ̸= ξ(s, t). Fact 3.5(2) applied to the
symps ξ(z, p) and ξ(s, t) tells us that t⋊⋉z and u ⊥ p, with {u} = Γ1(t)∩Γ1(z).
Also sp ⊥ u ⊥ L by the same lemma. Since maximal subspaces of ∆ are planes,
we deduce that u is not collinear to r; so t⋊⋉x for all x ∈ M .

Now select p′ ∈ sp \ {s, p}. Let u′ be the unique point of Γ2(p
′) on uz and

set {t′} = Γ1(p
′) ∩ Γ1(u

′). Clearly p′ ⊥⊥ z and p⋊⋉ r. Hence p′, t′, u′ play the
same role as p, t, u in the previous paragraphs. We conclude that u′ is collinear
to sp, so z ∈ uu′ ⊥ sp, yielding p ⊥ z, a contradiction. □

Lemma 4.9. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that no pair of points of Γ is
opposite. Assume also that some point p ∈ P is special to some point q ∈ P
at distance 3 from p. Then all pairs of points of Γ at mutual distance 3 are
special in ∆.
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Proof. By Lemma 4.8, the binary symmetric relation “is special to” satisfies the
assumptions of Lemma 4.1. The assertion now follows from that lemma. □

Our next aim is to show Lemma 4.12 below. We need two preliminary
observations.

Lemma 4.10. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that all pairs of points of Γ
at mutual distance 3 are special in ∆. Then no pair of points of Γ at mutual
distance 2 is collinear.

Proof. Let p, q ∈ P be points at distance 3 and assume for a contradiction that
some point r ∈ Γ2(p) ∩ Γ1(q) is collinear to p. Let s ∈ Γ1(p) ∩ Γ2(q) ∩ Γ3(r).
Then q ⊥ r ⊥ p ⊥ s is a path with q⋊⋉ p and r⋊⋉ s, so that q is opposite s by
Fact 3.8, a contradiction. □

Lemma 4.11. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that all pairs of points of Γ
at mutual distance 3 are special in ∆. Let p, q ∈ P be two points at mutual
distance 3. Let r, s ∈ Γ2(p) ∩ Γ1(q), r ̸= s. If p ⊥⊥ r and p ⊥⊥ s, then r ⊥⊥ s.

Proof. Since q is close to ξ(p, s), the point c(p, q) lies on q⊥∩ξ(p, s); in particular
s ⊥ c(p, q). Similarly, r ⊥ c(p, q). Since q ̸= c(p, q), we now see that s⊥ ∩ r⊥

contains a line, hence s ⊥⊥ r. □

Lemma 4.12. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that all pairs of points of Γ
at mutual distance 3 are special in ∆. Then all pairs of points of Γ at mutual
distance 2 are symplectic.

Proof. Let p, q ∈ P be two points at mutual distance 3. Let r, s ∈ Γ2(p)∩Γ1(q),
r ̸= s. Assume for a contradiction that r⋊⋉s.

Set a = Γ1(p) ∩ Γ1(r) and b = Γ1(p) ∩ Γ1(s). We start by noting that,
if a ⋊⋉ q, then a and s are opposite by Fact 3.8, a contradiction. Hence, by
Lemma 4.10, we find q ⊥⊥ a and likewise q ⊥⊥ b. Set c = c(p, q). Since p ⊥ a,
the point p is close to ξ(a, q), and so a ⊥ c ∈ ξ(a, q). Similarly b ⊥ c ∈ ξ(b, q).
Hence ξ(a, q) ∩ ξ(b, q) is a plane π which contains c. Let a1 ∈ ar \ {r} and
b1 ∈ bs \ {s} be arbitrary but such that δ(a1, b1) = 2. Set p1 = Γ1(a1)∩Γ1(b1).
Then Lemma 4.11 applied to a1 ⊥⊥ q ⊥⊥ b1 reveals a1 ⊥⊥ b1. By Fact 3.5,
a⊥1 ∩ π = b⊥1 ∩ π. Let x be the unique point of π collinear to ar. Then it
follows from taking two different choices for a1 that x is also collinear to bs.
If a1 exhausts ar \ {r}, then both a⊥1 ∩ π and b⊥1 ∩ π exhaust the line pencil
in π with vertex x, except for the line r⊥ ∩ π and s⊥ ∩ π, which must hence
coincide. Fact 3.5 yields r ⊥⊥ s, the sought contradiction. □

We can now close this case and show that the whole of Γ is collinear to a
unique point outside Γ.
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Lemma 4.13. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in
the metasymplectic space ∆ = (X,M ). Assume that all pairs of points of Γ at
mutual distance 3 are special in ∆. Then there exists a unique point x ∈ X
such that a ⊥ P . We also have x /∈ P .

Proof. By the previous lemmas, collinearity of points is the same whether con-
sidered in Γ or in ∆. Hence we may use the symbol ⊥ without any ambiguity.
Select a path p ⊥ r ⊥ s ⊥ q of points in P with δ(p, q) = 3. By Lemma 4.12,
there are symps ξ(p, s) and ξ(q, r), and since these have a line in common they
intersect in a plane π ⊇ rs. Fact 3.5 implies that x := c(p, q) lies in π. Since
r ⊥ x ⊥ p, we see that x is collinear to all points of rp. Varying r and s we see
that x is collinear to all points of Γ at distance 1 from p. Let ∗ be the binary
symmetric relation “c(a, b) = x” between points of Γ at distance 3. Then the
foregoing shows that ∗ satisfies the conditions of Lemma 4.1. Consequently
x is the common centre of all pairs of (special) points of Γ at distance 3. In
particular, x ⊥ z for all z ∈ P . Obviously x /∈ P since for each point of Γ,
there exist points of Γ symplectic and points special to it. □

4.5. There exist opposite point pairs

We have now come to the last case.

Lemma 4.14. Let Γ = (P,L ) be a generalized hexagon (fully) embedded in the
metasymplectic space ∆ = (X,M ). Assume that there exists a pairs of points
of Γ that is opposite in ∆. Then the embedding is isometric.

Proof. Let p, q ∈ P be opposite. Clearly δ(p, q) = 3. Let L ∈ L be any line
through q. Then Fact 3.6 implies that the unique point of L at distance 2
from p is special to p and all other points of L are opposite. Hence Lemma 4.1
implies that all point pairs of Γ at mutual distance 3 are opposite in ∆. Our
argument above then implies that all point pairs of Γ at mutual distance 2 are
special in ∆. □

Proposition 4.15. Let Γ = (P,L ) be a generalized hexagon fully and iso-
metrically embedded in the metasymplectic space ∆ = (X,M ) isomorphic to
F4,1(K,A) for some field K and some composition algebra A over K. Then Γ
is Moufang of type G2,1 and the little projective group of Γ is induced by the
collineation group of ∆.

Proof. Let p ∈ P be arbitrary. Let θ be any central elation of ∆ with centre
p. Let q ∈ P be opposite p. Let L,M ∈ L be two lines at distance 3 from
each other with p, q ∈ R(L,M). Since θ, as a central elation, stabilizes both L
and M , it stabilizes R(L,M). Hence θ stabilizes Γ3(p). Since θ also pointwise
fixes every line of ∆, and hence of Γ, through p, it pointwise fixes Γ1(p). Since
every point of Γ2(p) is uniquely determined in ∆ as the centre of a special
point pair consisting of a point of Γ3(p) and one of Γ1(p), we see that θ acts
on Γ. Since the group of central elations with centre p acts simply transitively
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on R(L,M) \ {p}, we see that we have all central elations with centre p in Γ.
Since p was arbitrary, we deduce that Γ is a Moufang hexagon of type G2,1 and
the assertions follow. □

Proposition 4.16. Let Γ = (P,L ) be a thick generalized hexagon fully and
isometrically embedded in the metasymplectic space ∆ = (X,M ) isomorphic to
F4,4(K,A) for some field K and some composition algebra A over K. Then A
is inseparable in characteristic 2, ∆ is hence isomorphic to F4,1(A2,K), and Γ
is hence a Moufang hexagon of type G2,1 with little projective group induced by
the collineation group of ∆.

Proof. Select an ordinary hexagon p ⊥ r1 ⊥ s1 ⊥ q ⊥ s2 ⊥ r2 ⊥ p in Γ
(hence with δ(p, q) = δ(r1, s2) = δ(r2, s1) = 3), and an additional path p ⊥
r3 ⊥ s3 ⊥ q, with r3 /∈ {r1, r2}. We now use the assertions and notation of
Proposition 3.17. The point r1 is collinear to p and also to every member of

Ê(p, q) obtained by intersecting a symplecton through pr1 with a symplecton

through the line qs1. Hence r1 ∈ T̂ (p, q). Similarly for ri, si, i = 1, 2, 3. Hence

the line risi, i ∈ {1, 2, 3}, also belongs to T̂ (p, q). If ai runs through risi, then

Wai
:= a⊥i ∩ Ê(p, q) runs through the set of singular (hyperbolic) 3-spaces of

Ê(p, q) containing the singular (hyperbolic) plane πi := (risi)
⊥ ∩ Ê(p, q). If

a1⋊⋉a2, then c(a1, a2) = Wa1
∩Wa2

. However, this way we see that, if a1⋊⋉a3,
both c(a, 1, a2) and c(a1, a3) belong to Wa1

, which does not contain special
pairs. We conclude a1 ⋊⋉ a2 = a1 ⋊⋉ a3. Hence R(r1s1, r2s2) = R(r1s1, r3s3),
implying π⊥⊥

1 ∩ π⊥⊥
2 = π⊥⊥

1 ∩ π⊥⊥
3 . If A is not an inseparable field extension in

characteristic 2, then we use Proposition 3.18 to see Ê(p, q) embedded as a
quadric in a projective space PG(V ) such that the underlying vector space V is
endowed with a non-degenerate bilinear form β with the property that points

⟨v⟩ and ⟨w⟩ of Ê(p, q) are colinear if and only if β(v, w) = 0. Hence, by non-
degeneracy of β, we conclude π3 ⊆ ⟨π1, π2⟩ (generation in PG(V )). However,
⟨π1, π2⟩ intersects the quadric in a Klein quadric, which does not contain three
mutually disjoint planes. □

4.6. The non-thick isometric case

We now specialize to non-thick metasymplectic spaces. Since we assume
thick lines, these are, as already mentioned, the line Grassmannians of polar
spaces of rank 4. The symplecta are polar spaces of rank 3 and the point-perps
are degenerate dual polar spaces of rank 3, more exactly, the direct product
of a thick line and a generalized quadrangle with thick lines. Embeddings of
hexagons in such structures remain completely mysterious, and are presumably
wild.

Now suppose the embedding of the hexagon Γ = (P,L ) is isometric in the
line Grassmannian of the polar space ∆∗ = (X∗,M ∗). Let x ⊥ y ⊥ z ⊥ u be
a path in Γ with δ(x, u) = 3. The line xy of Γ corresponds to a planar line
pencil that we denote by Π(p, α), where p is the vertex of the pencil and α the
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plane. Since the embedding is isometric with distance 2 in Γ corresponding
to special in the metasymplectic space, the line yz ∈ L corresponds to a line
pencil Π(q, β), with p ̸= q and α ̸= β, but of course q ∈ α and p ∈ β. Then
the line zu corresponds to a line pencil Π(r, γ), with r ∈ β and q ∈ γ. It
follows that qr = p⊥∩γ. Now u corresponds to a line L of γ through r distinct
from qr (the latter corresponds to z). A line of Γ through u distinct from zu
corresponds to a line pencil with vertex s in γ \qr. This means that p and s are
not collinear, but p and both q and r are. This implies that, if we identify each
line of Γ with the vertex of the corresponding line pencil, then we obtain a flat
and polarized, hence regular (with the terminology of [13]) but not necessarily
full embedding of the dual Γ∗ of Γ in any ambient projective space of ∆∗ (note
that ∆∗ indeed admits a projective embedding as it has rank 4). Since the
line pencils are full, the classification of regularly embedded hexagons in [13]
implies that Γ∗ is isomorphic to the split Cayley hexagon G2,2(K) for some field
K, and hence Γ is isomorphic to G2,1(K). Also, the polar space ∆∗ is always
isomorphic to B3,1(K,K), our notation for the parabolic polar space of rank 3
(a parabolic quadric in PG(6,K)). Hence we have shown:

Proposition 4.17. Let Γ be a thick generalized hexagon fully and isometrically
embedded in the non-thick metasymplectic space ∆. Then Γ is isomorphic to
G2,1(K) for some field K, and ∆ is the line Grassmannian of B3,1(K).
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