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PRERESOLVING SUBCATEGORIES IN

EXTRIANGULATED CATEGORIES

Songsong Liu and Jiaqun Wei

Abstract. In this paper, we introduce and study preresolving subcate-

gories in an extriangulated category C . Let Y be a Z-preresolving sub-
category of C admitting a Z-proper ξ-generator X . We give the charac-

terization of Z-proper Y-resolution dimension of an object in C . Next, for
an object A in C , if the Z-proper Y-resolution dimension of A is at most

n, then all “n-X -syzygies” of A are objects in Y. Finally, we prove that A

has a Z-proper X -resolution if and only if A has a Z-proper Y-resolution.
As an application, we introduce (X ,Z)-Gorenstein subcategory GXZ(ξ)

of C and prove that GXZ(ξ) is both Z-resolving subcategory and Z-

coresolving subcategory of C .

1. Introduction

Extriangulated categories were introduced by Nakaoka and Palu [11], which
is formulated by extracting those properties of Ext1 on triangulated categories
and exact categories. Extriangulated categories share much in common with
exact categories and triangulated categories but also differs considerably. Ex-
act categories and triangulated categories are examples of extriangulated cat-
egories, but there are extriangulated categories which are neither exact cate-
gories nor triangulated categories, see [11,14].

Let A be a triangulated category with a proper class ξ′ of triangles. Asadol-
lahi and Salarian [1] introduced and studied ξ′-Gprojective and ξ′-Ginjective ob-
jects, and developed a relative homological algebra in A . In [12], Ren and Liu
further studied Gorenstein homological dimensions for triangulated categories.
Hu, Zhang and Zhou [3] introduced the notion of a proper class of E-triangles ξ
in extriangulated category C and demonstrated that (C ,Eξ, sξ) is a new extri-
angulated category. Moreover, they introduced and studied the ξ-Gorenstein
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projective objects in C . In [4], they introduced and studied the Gorenstein
category in an extriangulated category C , and proved that the stability of the
Gorenstein category GW(ξ) in C . In [5], they studied Gorenstein homologi-
cal dimensions and given some characterizations of ξ-Gprojective dimension by
using derived functors in an extriangulated category C . Their series of stud-
ies provided a theoretical basis for the subsequent studies of extriangulated
categories. In [2], Auslander and Bridger introduced the notion of resolving
subcategories X of abelian category B. In [15], Zhu introduced and studied
the X -resolution dimensions and special X -precovers for resolving subcategory
X of B. In [6], Huang introduced relative preresolving subcategories and pre-
coresolving subcategories of an abelian category and defined homological di-
mensions and codimensions relative to these subcategories. Moreover, Huang
studied the properties of these homological dimensions and codimensions and
unified some important properties possessed by some known homological di-
mensions. Recently, Huang [7] further studied the homological dimension of
preresolving subcategories of an abelian category. In [10], Ma, Zhao and Huang
introduced and studied (pre)resolving subcategories of a triangulated category
and the homological dimension relative to these subcategories. Inspired by the
above, in this paper, we introduce and study preresolving subcategories of an
extriangulated category C .

In this paper, we get the following three main results. Let Y be a Z-
preresolving subcategory of C admitting a Z-proper ξ-generator X . First, we
give the characterization of Z-proper Y-resolution dimension of an object in
C . Based on this, we can calculate the Z-proper Y-resolution dimension of an
object in C (See Theorem 3.9). Second, assume X ⊆ Z and Y is closed under
Cocones of Z-proper ξ-deflations. For an object C in C , if YZ -res.dim(C) ⩽ n,
then all “n-X -syzygies” of C are objects in Y (See Theorem 3.16). Third, as-
sume Y is closed under Cocones of Z-proper ξ-deflations. For an object A in C ,
we prove that A has a Z-proper X -resolution if and only if A has a Z-proper
Y-resolution (See Theorem 3.18). As an application, we introduce (X ,Z)-
Gorenstein subcategory GXZ(ξ) of C and prove that GXZ(ξ) is a Z-resolving
and Z-coresolving subcategory of C (See Theorem 4.3). As a generalization,
we consider the GP(ξ) and GI(ξ) of C and get some good results.

The paper is organized as follows. In Section 2, we recall some definitions
of extriangulated categories and outline some properties that will be used. In
Section 3, we introduce and study preresolving subcategories in C . Moreover,
we prove the above three main results. In Section 4, we prove the above
application.

2. Preliminaries

Let us briefly recall some definitions and basic properties of extriangulated
categories. We omit some details here, but the reader can find them in [11].
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Let C be an additive category equipped with a biadditive functor

E : C op × C → Ab,

where Ab is the category of abelian groups. For any pair of objects A,C ∈ C ,
an element δ ∈ E(C,A) is called an E-extension. The zero element 0 ∈ E(C,A)
is called the split E-extension.

For any morphism a ∈ C (A,A′) and c ∈ C (C ′, C), we have

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C ′, A).

We simply denote them as a∗δ and c∗δ. A morphism (a, c): δ → δ′ of E-
extensions is a pair of morphisms a ∈ C (A,A′) and c ∈ C (C,C ′) satisfying the
equality a∗δ = c∗δ′.

Definition 2.1 ([11, Definition 2.9]). Let s be a correspondence which asso-
ciates an equivalence class

s(δ) = [A
x−→ B

y−→ C]

to any E-extension δ ∈ E(C,A). This s is called a realization of E if it satisfies

the following condition (⋆). In this case, we say that the sequence A
x−→ B

y−→
C realizes δ, whenever it satisfies s(δ) = [A

x−→ B
y−→ C].

(⋆) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions, with

s(δ) = [A
x−→ B

y−→ C] and s(δ′) = [A′ x′

−→ B′ y′

−→ C ′].

Then, for any morphism (a, c) : δ → δ′, there exists b ∈ C (B,B′) which makes
the following diagram commutative:

A

a

��

x // B
y
//

b

��

C

c

��

A′ x′
// B′ y′

// C ′.

Definition 2.2 ([11, Definition 2.12]). We call the triplet (C ,E, s) an extrian-
gulated category if it satisfies the following conditions:

(ET1) E: C op × C → Ab is a biadditive functor.
(ET2) s is an additive realization of E.
(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions,

realized as s(δ) = [A
x−→ B

y−→ C], s(δ′) = [A′ x′

−→ B′ y′

−→ C ′]. For any
commutative square in C

A

a

��

x // B

b
��

y
// C

A′ x′
// B′ y′

// C ′

there exists a morphism (a, c): δ → δ′ which is realized by (a, b, c).
(ET3)op Dual of (ET3).
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(ET4) Let δ ∈ E(D,A) and δ′ ∈ E(F,B) be E-extensions realized by A
f−→

B
f ′

−→ D and B
g−→ C

g′

−→ F , respectively. Then there exist an object E ∈ C ,
a commutative diagram

A
f
// B

g

��

f ′
// D

d

��

A
h // C

g′

��

h′
// E

e

��

F F

in C , and an E-extension δ′′ ∈ E(E,A) realized by A
h−→ C

h′

−→ E, which
satisfy the following compatibilities:

(i) D
d−→ E

e−→ F realizes E(F, f ′)(δ′),
(ii) E(d,A)(δ′′) = δ,
(iii) E(E, f)(δ′′) = E(e,B)(δ′).
(ET4)op Dual of (ET4).

In addition, we assume the following condition for the rest of the paper (see
[11, Condition 5.8]).

Condition 2.3. (WIC) (1) Let f : X → Y and g : Y → Z be any composable
pair of morphisms in C . If gf is an inflation, then f is an inflation.

(2) Let f : X → Y and g : Y → Z be any composable pair of morphisms in
C . If gf is a deflation, then g is a deflation.

Remark 2.4. If C is an extriangulated category, then by [8, Proposition 2.7],
the condition (WIC) is equivalent to C being weakly idempotent complete.

Definition 2.5 ([11, Definitions 2.15 and 2.19]). (1) A sequence A
x−→ B

y−→
C is called a conflation if it realizes some E-extension δ ∈ E(C,A). In this case,
x is called an inflation and y is called a deflation.

(2) If a conflation A
x−→ B

y−→ C realizes δ ∈ E(C,A), we call the pair

(A
x−→ B

y−→ C, δ) an E-triangle, and write it in the following way

A
x−→ B

y−→ C
δ

99K .

We usually do not write this “δ” if it is not used in the argument.

(3) Let A
x−→ B

y−→ C
δ

99K and A
′ x

′

−→ B
′ y

′

−→ C
′ δ

′

99K be any pair of

E-triangles. If a triplet (a, b, c) realizes (a, c) : δ −→ δ
′
, then we write it as

A

a

��

x // B

b

��

y
// C

c

��

δ //

A
′ x

′
// B

′ y
′

// C
′ δ

′
//
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and call (a, b, c) a morphism of E-triangles. If a, b, c above are isomorphisms,

then A
x−→ B

y−→ C
δ

99K and A
′ x

′

−→ B
′ y

′

−→ C
′ δ

′

99K are said to be isomorphic.

Lemma 2.6 ([11, Proposition 3.15]). Let (C ,E, s) be an extriangulated cate-
gory. Then the following hold:

(1) Let C be any object, and let A1
x1−→ B1

y1−→ C
δ1
99K and A2

x2−→ B2
y2−→

C
δ2
99K be any pair of E-triangles. Then there is a commutative diagram in C

A2

m2

��

A2

x2

��

A1
m1 // M

e2

��

e1 // B2

y2

��

//

A1
x1 // B1

��

y1 // C //

��

which satisfies s(y∗2δ1) = [A1
m1−→ M

e1−→ B2] and s(y∗1δ2) = [A2
m2−→ M

e1−→
B1].

(2) Let A be any object, and let A
x1−→ B1

y1−→ C1
δ1
99K and A

x2−→ B2
y2−→

C2
δ2
99K be any pair of E-triangles. Then there is a commutative diagram in C

A

x2

��

x1 // B1

m2

��

y1 // C1
//

B2

y2

��

m1 // M

e2

��

e1 // C1
//

C2

��

C2

��

which satisfies s(x2∗δ1) = [B2
m1−→ M

e1−→ C1] and s(x1∗δ2) = [B1
m2−→ M

e2−→
C2].

In [3], Hu, Zhang and Zhou gave the following definitions.
A class of E-triangles ξ is closed under base change if for any E-triangle

A
x−→ B

y−→ C
δ

99K∈ ξ

and any morphism c : C
′ → C, then any E-triangle A

x
′

−→ B
′ y

′

−→ C
′ c∗δ
99K

belongs to ξ.
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Dually, a class of E-triangles ξ is closed under cobase change if for any E-
triangle

A
x−→ B

y−→ C
δ

99K∈ ξ

and any morphism a : A → A
′
, then any E-triangle A

′ x
′

−→ B
′ y

′

−→ C
a∗δ
99K

belongs to ξ.
A class of E-triangles ξ is called saturated if in the situation of Lemma 2.6(1),

whenever A2
x2−→ B2

y2−→ C
δ2
99K and A1

m1−→ M
e1−→ B2

y∗
2δ1
99K belong to ξ, then

the E-triangle A1
x1−→ B1

y1−→ C
δ1
99K belongs to ξ.

An E-triangle A
x−→ B

y−→ C
δ

99K is called split if δ = 0. It is easy to see
that it is split if and only if x is section or y is retraction.

The full subcategory consisting of the split E-triangles will be denoted by
∆0.

Definition 2.7 ([3, Definition 3.1]). Let ξ be a class of E-triangles which is
closed under isomorphisms. ξ is called a proper class of E-triangles if the
following conditions hold:

(1) ξ is closed under finite coproducts and ∆0 ⊆ ξ.
(2) ξ is closed under base change and cobase change.
(3) ξ is saturated.

Definition 2.8 ([3, Definition 4.1]). An object P ∈ C is called ξ-projective if
for any E-triangle

A
x−→ B

y−→ C
δ

99K

in ξ, the induced sequence of abelian groups

0 −→ C (P,A) −→ C (P,B) −→ C (P,C) −→ 0

is exact. Dually, we have the definition of ξ-injective object.
We denote P(ξ) (resp., I(ξ)) the class of ξ-projective (resp., ξ-injective) ob-

jects of C . It follows from the definition that these subcategories P(ξ) and I(ξ)
are full, additive, closed under isomorphisms and direct summands.

An extriangulated category (C ,E, s) is said to have enough ξ-projectives
(resp., enough ξ-injectives) provided that for each object A, there exists an
E-triangle

K −→ P −→ A 99K (resp., A −→ I −→ K 99K)

in ξ with P ∈ P(ξ) (resp., I ∈ I(ξ)).

Definition 2.9 ([3, Definition 4.4]). A ξ-exact complex X is a diagram

X := · · · −→ X1
d1−→ X0

d0−→ X−1 −→ · · ·

in C , such that for each integer n, there exists an E-triangle Kn+1
gn−→ Xn

fn−→
Kn

δn
99K in ξ and dn = gn−1fn.
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Definition 2.10 ([3, Definition 4.5]). Let W be a class of objects in C . An
E-triangle

A −→ B −→ C 99K

in ξ is called to be C (−,W)-exact (resp., C (W,−)-exact) if for any W ∈
W, the induced sequence of abelian group 0 −→ C (C,W ) −→ C (B,W ) −→
C (A,W ) −→ 0 (resp., 0 −→ C (W,A) −→ C (W,B) −→ C (W,C) −→ 0) is
exact in Ab.

Definition 2.11 ([3, Definition 4.6]). Let W be a class of objects in C . A com-
plex X is called C (−,W)-exact (resp., C (W,−)-exact) if it is a ξ-exact complex

X := · · · −→ X1
d1−→ X0

d0−→ X−1 −→ · · ·
in C , such that there exists an C (−,W)-exact (resp., C (W,−)-exact) E-
triangle

Kn+1
gn−→ Xn

fn−→ Kn
δn
99K

in ξ and dn = gn−1fn for each integer n.

3. Basic results

From now on to the end of this paper, if not otherwise specified, we will
always assume that C = (C ,E, s) is an extriangulated category and ξ is a fixed
proper class of E-triangles in C . We also assume the extriangulated category
C has enough ξ-projectives and ξ-injectives, and it satisfies Condition (WIC).

Definition 3.1. Let Y,Z be subcategories of C and M be an object in C .
(1) A Y-resolution of M is a ξ-exact complex

· · · −→ Yi −→ · · · −→ Y1 −→ Y0 −→ M

in C with all Yi ∈ Y.
(2) A Y-resolution ofM is called Z-proper Y-resolution if it is C (Z,−)-exact.
Dually, one can define the notice of a (Z-coproper) Y-coresolution. We use

res YZ (resp., cores ỸZ) to denote the subcategory of objects of C admitting
a Z-proper Y-resolution (resp., Z-coproper Y-coresolution).

Definition 3.2. Let Y,Z be subcategories of C and M be an object in C .
(1) The Z-proper Y-resolution dimension of M , written YZ -res.dim(M), is

defined by

YZ -res.dim(M) :=inf{n ⩾ 0 | there exists a C (Z,−)-exact ξ-exact complex

Yn −→ · · · −→ Y1 −→ Y0 −→ M in C with all Yi ∈ Y}.
(2) The Z-proper Y-coresolution dimension of M , written YZ -cores.dim(M),

is defined by

YZ -cores.dim(M) :=inf{n ⩾ 0 | there exists a C (Z,−)-exact ξ-exact complex

M −→ Y0 −→ Y1 −→ · · · −→ Yn in C with all Yi ∈ Y}.

Dually, ỸZ -cores.dim(M) and ỸZ -res.dim(M) are defined.
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We use (YZ)
∧ (resp., (ỸZ)

∨) to denote the subcategory of C consisting of ob-
jects having finite Z-proper Y-resolution (resp., Z-coproper Y-coresolution) di-

mension, and use (YZ)
∧
n (resp., (ỸZ)

∨
n) to denote the subcategory of C consist-

ing of objects having Z-proper Y-resolution (resp., Z-coproper Y-coresolution)
dimension at most n.

For a ξ-exact complex

· · · fn+1−→ Yn −→ · · · f2−→ Y1
f1−→ Y0

f0−→ M

(resp., M
f0−→ Y0

f1−→ Y1
f2−→ · · · −→ Yn

fn+1−→ · · · )
in C with all Yi ∈ Y, there are E-triangles

K1
g0−→ Y0

f0−→ M 99K, and Ki+1
gi−→ Yi

hi−→ Ki 99K

(resp., M
f0−→ Y0

g0−→ K1 99K, and Ki
hi−→ Yi

gi−→ Ki+1 99K)

in ξ with fi = gi−1hi (resp., fi = higi−1) for each i > 0. The object Ki is called
an i-Y-syzygy (resp., i-Y-cosyzygy) of M , denoted by Ωi

Y(M) (resp., Σi
Y(M)).

Definition 3.3. Let X and Y be subcategories of C with X ⊆ Y.
(1) X is called a ξ-generator (resp., ξ-cogenerator) of Y if for any object Y in

Y, there exists an E-triangle Y ′ −→ X −→ Y 99K (resp., Y −→ X −→ Y
′
99K)

in ξ with X ∈ X and Y
′ ∈ Y (See [13, Definition 2.24]).

(2) Let Z be a subcategory of C. X is called a Z-proper ξ-generator (resp.,
Z-coproper ξ-cogenerator) of Y if for any object Y in Y, there exists an C(Z,−)-

exact (resp., C(−,Z)-exact) E-triangle Y
′ −→ X −→ Y 99K (resp., Y −→

X −→ Y
′
99K) in ξ with X ∈ X and Y

′ ∈ Y.

Definition 3.4. Let Y,Z be subcategories of C . Y is called Z-preresolving in
C if the following conditions are satisfied.

(1) Y admits a Z-proper ξ-generator.
(2) Y is closed under Z-proper ξ-extensions, that is, for any C (Z,−)-exact

E-triangle A −→ B −→ C 99K in ξ, if A,C ∈ Y, then B ∈ Y.
A Z-preresolving subcategory Y of C is called Z-resolving if the following

condition is satisfied.
(3) Y is closed under Cocones of Z-proper ξ-deflations, that is, for any

C (Z,−)-exact E-triangle A −→ B −→ C 99K in ξ, if B,C ∈ Y, then A ∈ Y.
Dually, the Z-precoresolving and Z-coresolving are defined.

Lemma 3.5. Let Y be a Z-preresolving subcategory of C admitting a Z-proper
ξ-generator X , and let

(3.1) M −→ Y1
f−→ Y0 −→ A

be a ξ-exact complex in C with Y0, Y1 ∈ Y. Then there exists a ξ-exact complex

(3.2) M −→ Y −→ X −→ A

in C with X ∈ X and Y ∈ Y. Moreover, if the ξ-exact complex (3.1) is
C (Z,−)-exact, then so is (3.2).
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Proof. SinceM −→ Y1
f−→ Y0 −→ A is a ξ-exact complex in C with Y0, Y1 ∈ Y,

there are two E-triangles

M −→ Y1
g−→ K 99K and K

h−→ Y0 −→ A 99K

in ξ such that f = hg. Since X is a Z-proper generator of Y and Y0 ∈ Y, there
exists a C (Z,−)-exact E-triangle

Y
′
−→ X −→ Y0 99K

in ξ with X ∈ X and Y
′ ∈ Y. By [3, Theorem 3.2] and (ET4)op, we have the

following commutative diagram:

Y
′

// W

��

// K

��

//

Y
′

// X

��

// Y0

��

//

A

��

A

��

(3.3)

where all rows and columns are E-triangles in ξ. Moreover, by Lemma 2.6, we
have the following commutative diagram:

M

��

M

��

Y
′

// Y

��

// Y1

��

//

Y
′

// W

��

// K

��

//

(3.4)

where all rows and columns are E-triangles in ξ. Since the second row in (3.3)
is C (Z,−)-exact, by [4, Lemma 2], we know that the first row in (3.3) and the

second row in (3.4) are C (Z,−)-exact. Hence, Y ∈ Y since Y
′
, Y1 ∈ Y and Y

is closed under Z-proper ξ-extensions. Connecting the second columns in the
above diagrams, we obtain that the ξ-exact complex M −→ Y −→ X −→ A in
C with X ∈ X and Y ∈ Y.

Moreover, if (3.1) is C (Z,−)-exact, then so are the third columns in the
above two diagrams. By [4, Lemma 2] and the snake lemma, we know that the
second columns in the above two diagrams are C (Z,−)-exact. □
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We can immediately obtain the following corollary.

Corollary 3.6. Let Y be a Z-preresolving subcategory of C admitting a Z-
proper ξ-generator X , and let

(3.5) Y1 −→ Y0 −→ A 99K (resp., A −→ Y0 −→ Y1 99K)

be an E-triangle in ξ with Y0, Y1 ∈ Y. Then there exists an E-triangle
(3.6) Y −→ X −→ A 99K (resp., A −→ Y −→ X 99K)

where Y ∈ Y and X ∈ X . Moreover, if the E-triangle (3.5) is C (Z,−)-exact,
then so is (3.6).

The following proposition gives the relationship between n-Y-cosyzygy and
n-X -cosyzygy.

Proposition 3.7. Let Y be a Z-preresolving subcategory of C admitting a
Z-proper ξ-generator X , and let

M −→ Yn−1 −→ · · · −→ Y1 −→ Y0 −→ A

be a ξ-exact complex in C with all Yi ∈ Y for n ⩾ 1. Then there exists a
ξ-exact complex

N −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ A

in C and a C (Z,−)-exact E-triangle
Y −→ N −→ M 99K

in ξ with all Xi ∈ X and Y ∈ Y. In particular, if an object in C is an
n-Y-cosyzygy, then it is an n-X -cosyzygy.

Proof. We proceed by induction on n. If n = 1, we have an E-triangle
M −→ Y0 −→ A 99K

in ξ. Since X is a Z-proper generator of Y and Y0 ∈ Y, there exists a C (Z,−)-
exact E-triangle

Y −→ X0 −→ Y0 99K

in ξ with X0 ∈ X and Y ∈ Y. By [3, Theorem 3.2] and (ET4)op, we have the
following commutative diagram:

Y // N

��

// M

��

//

Y // X0

��

// Y0

��

//

A

��

A

��

(3.7)
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where all rows and columns are E-triangles in ξ. By [4, Lemma 2], we know
that the first row in (3.7) is C (Z,−)-exact. Hence, the first row and the second
column in (3.7) are what we need.

We assume that n ⩾ 2. By assumption, there are two ξ-exact complexes

M −→ Yn−1 −→ · · · −→ Y2 −→ K

and

K −→ Y1 −→ Y0 −→ A

in C with all Yi ∈ Y. By Lemma 3.5, we have a ξ-exact complex

K −→ Y
′
−→ X0 −→ A

with X0 ∈ X and Y
′ ∈ Y. Moreover, we obtain two E-triangles

K −→ Y
′
−→ K1 99K and K1 −→ X0 −→ A 99K (⋆)

in ξ. Hence, we have a ξ-exact complex

M −→ Yn−1 −→ · · · −→ Y2 −→ Y −→ K1.

By the induction hypothesis, there exist a ξ-exact complex

(3.8) N −→ Xn−1 −→ · · · −→ X2 −→ X1 −→ K1

and a C (Z,−)-exact E-triangle

Y −→ N −→ M 99K

in ξ with all Xi ∈ X and Y ∈ Y. Connecting the E-triangle (⋆) and the ξ-exact
complex (3.8), we obtain that the ξ-exact complex

N −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ A. □

Corollary 3.8. Let Y be a Z-preresolving subcategory of C admitting a Z-
proper ξ-generator X , and let M be an object in C . If Y-cores.dim(M) = n(⩾
1), then there exists a C (Z,−)-exact E-triangle

Y −→ N −→ M 99K

in ξ with X -cores.dim(N) ⩽ n and Y ∈ Y.

Proof. If Y-cores.dim(M) = n, there exists a ξ-exact complex

M −→ Yn −→ · · · −→ Y1 −→ Y0 −→ 0.

Note that the E-triangle Y0 −→ Y0 −→ 0 99K∈ ξ by Definition 2.7. Applying
Lemma 3.7 with A = 0. Clearly, this corollary is hold. □

The following result gives a criterion to calculate the Z-proper Y-resolution
dimension of an object in C .
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Theorem 3.9. Let Y be a Z-preresolving subcategory of C admitting a Z-
proper ξ-generator X . For any object M in C and any positive integer n, the
following are equivalent:

(1) YZ-res.dim(M) ⩽ n.
(2) For any integer k with 1 ⩽ k ⩽ n, there exists a C (Z,−)-exact ξ-exact

complex

Tn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M

such that Ti ∈ X if 0 ⩽ i < k and Tj ∈ Y if j ⩾ k.
(3) For any integer k with 0 ⩽ k ⩽ n − 1, there exists a C (Z,−)-exact

ξ-exact complex

Tn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M

such that Tk ∈ X and other Ti ∈ Y.
(4) For any integer k with 0 ⩽ k ⩽ n − 1, there exists a C (Z,−)-exact

ξ-exact complex

Yn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M

with Yn ∈ Y, such that Tk ∈ Y and other Ti ∈ X .

Proof. (2) =⇒ (1), (3) =⇒ (1), (4) =⇒ (1) are obvious.
(1) =⇒ (2): We proceed by induction on n. If n = 1, the assertion is true by

Corollary 3.6. Now suppose n ⩾ 2. Then there exist two C (Z,−)-exact ξ-exact
complexes

(3.9) T
′

n −→ T
′

n−1 −→ · · · −→ T
′

2 −→ B

and

(3.10) B −→ T
′

1 −→ T
′

0 −→ M

with all T
′

i ∈ Y. By Lemma 3.5, there exists a C (Z,−)-exact ξ-exact complex

B −→ T
′′

1 −→ T0 −→ M

with T
′′

1 ∈ Y and T0 ∈ X . Moreover, we obtain two C (Z,−)-exact E-triangles

B −→ T
′′

1 −→ K 99K (♣) and K −→ T0 −→ M 99K (♠)

in ξ. Hence, connecting the E-triangle (♣) and the ξ-exact complex (3.9), we
have a new ξ-exact complex

(3.11) T
′

n −→ T
′

n−1 −→ · · · −→ T
′

2 −→ T
′′

1 −→ K.

If k = 1, the above ξ-exact complex (3.11) is what we need. By the induction
hypothesis, for any integer k with 2 ⩽ k ⩽ n, there exists a C (Z,−)-exact ξ-
exact complex

(3.12) Tn −→ Tn−1 −→ · · · −→ T2 −→ T1 −→ K
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such that Ti ∈ X if 1 ⩽ i < k and Tj ∈ Y if j ⩾ k. Note that T0 ∈ X ⊆
Y. Connecting the E-triangle (♠) and the ξ-exact complex (3.12), we have
a C (Z,−)-exact ξ-exact complex

Tn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M.

(1) =⇒ (3): We also proceed by induction on n. Let n = 1, the assertion
is true by Corollary 3.6. Now suppose n ⩾ 2. Then there exists a C (Z,−)-
exact ξ-exact complex

Yn −→ Yn−1 −→ · · · −→ Y1 −→ Y0 −→ M

such that Ti ∈ Y. We have a C (Z,−)-exact ξ-exact complex D −→ Y1 −→
Y0 −→ M , by Lemma 3.5, we get a C (Z,−)-exact ξ-exact complex D −→
Y

′

1 −→ T0 −→ M with Y
′

1 ∈ Y and T0 ∈ X , which yields a C (Z,−)-exact ξ-
exact complex

(3.13) Yn −→ Yn−1 −→ · · · −→ Y2 −→ Y
′

1 −→ T
′

0 −→ M.

If k = 1, the above ξ-exact complex (3.13) is what we need. Consider the
C (Z,−)-exact ξ-exact complex

Yn −→ Yn−1 −→ · · · −→ Y2 −→ Y
′

1 −→ E.

It follows that YZ -res.dim(E) ⩽ n − 1. By the induction hypothesis, there
exists a C (Z,−)-exact ξ-exact complex

(3.14) Tn −→ Tn−1 −→ · · · −→ T1 −→ E

which one of Tk is in X for 1 ⩽ k ⩽ n − 1 and other Ti ∈ Y. Note that
T0 ∈ X ⊆ Y. Now one can paste the above C (Z,−)-exact ξ-exact complex
(3.14) and the C (Z,−)-exact E-triangle E −→ T0 −→ M 99K together to
obtain the C (Z,−)-exact ξ-exact complex

Tn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M

such that Tk ∈ X and other Ti ∈ Y.
(1) =⇒ (4): The prove is similar to (1) =⇒ (3). □

Dually, we have the following.

Theorem 3.10. Let Y be a Z-preresolving subcategory of C admitting a Z-
proper ξ-generator X . For any object M in C and any positive integer n, the
following are equivalent:

(1) YZ-cores.dim(M) ⩽ n.
(2) For any integer k with 1 ⩽ k ⩽ n, there exists a C (Z,−)-exact ξ-exact

complex
M −→ T0 −→ T1 −→ · · · −→ Tn−1 −→ Tn

such that Ti ∈ Y if 0 ⩽ i < k and Pj ∈ X if j ⩾ k.
(3) For any integer k with 1 ⩽ k ⩽ n, there exists a C (Z,−)-exact ξ-exact

complex
M −→ T0 −→ T1 −→ · · · −→ Tn−1 −→ Tn
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such that Tk ∈ X and other Ti ∈ Y.
(4) For any integer k with 1 ⩽ k ⩽ n, there exists a C (Z,−)-exact ξ-exact

complex

M −→ Y0 −→ T1 −→ · · · −→ Tn−1 −→ Tn

with Y0 ∈ Y, such that Tk ∈ Y and other Ti ∈ X .

The following two results generalize [4, Theorems 3 and 4]. The arguments
here are similar to that in [4], so we omit them.

Proposition 3.11. Let X ⊆ Z be subcategories of C , and let

(3.15) C1 −→ C0 −→ C 99K

be an E-triangle in ξ. Let

(3.16) · · · −→ Xi
0 −→ · · · −→ X1

0 −→ X0
0 −→ C0

and

(3.17) · · · −→ Xi
1 −→ · · · −→ X1

1 −→ X0
1 −→ C1

be Z-proper X -resolutions of C0 and C1 with all Xi
0, X

i
1 ∈ X . Then

(1) If (3.15)is C (Z,−)-exact, there exists a Z-proper X -resolution of C

(3.18) · · · −→ Xi
0 ⊕Xi−1

1 −→ · · · −→ X1
0 ⊕X0

1 −→ X0
0 −→ C

(2) If (3.15), (3.16), (3.17) are C (−,Z)-exact, then so is (3.18).

Proposition 3.12. Let X ⊆ Z be subcategories of C , and let

(3.19) M −→ M0 −→ M1 99K

be an E-triangle in ξ. Let

(3.20) M0 −→ X0
0 −→ · · · −→ X0

1 −→ X0
n −→ · · ·

and

(3.21) M1 −→ X1
0 −→ · · · −→ X1

1 −→ X1
n −→ · · ·

be Z-coproper X -coresolutions of M0 and M1 with all X0
i , X

1
i ∈ X . Then

(1) If (3.19) is C (−,Z)-exact, there exists a Z-coproper X -coresolution of
M

(3.22) M −→ X0
0 −→ X0

1 ⊕X1
0 −→ X0

2 ⊕X1
1 −→ · · · −→ X0

i ⊕X1
i−1 −→ · · ·

(2) If (3.19), (3.20), (3.21) are C (Z,−)-exact, then so is (3.22).

Proposition 3.13. Let Y be a Z-resolving subcategory of C admitting a Z-
proper ξ-generator X . If A −→ B −→ C 99K is a C (Z,−)-exact E-triangle in
ξ with C ∈ Y, then YZ-res.dim(A) = YZ-res.dim(B).
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Proof. Since Y is a Z-resolving subcategory of C , YZ -res.dim(A) = 0 if and
only if YZ -res.dim(B) = 0.

Now, assume that YZ -res.dim(B) = m ⩾ 1. Then there exists a C (Z,−)-

exact E-triangle KB
1 −→ Y

′

0 −→ B 99K in ξ with Y
′

0 ∈ Y and YZ -res.dim(KB
1 )

⩽ m−1. By [3, Theorem 3.2] and (ET4)op, we have the following commutative
diagram:

KB
1

// M

��

// A

��

//

KB
1

// Y
′

0

��

// B

��

//

C

��

C

��

where all rows and columns are E-triangles in ξ. Since the second row and the
third column are C (Z,−)-exact, by the snake lemma and [4, Lemma 2], we
know that the first row and the second column are C (Z,−)-exact. It is clear
that M ∈ Y since Y is closed under Cocones of Z-proper ξ-deflations. Hence,

YZ -res.dim(A) ⩽ YZ -res.dim(KB
1 ) + 1 ⩽ m = YZ -res.dim(B).

Conversely, assume that YZ -res.dim(A) = n ⩾ 1. Then there exists a
C (Z,−)-exact E-triangle KA

1 −→ Y0 −→ A 99K in ξ with Y0 ∈ Y and YZ -
res.dim(KA

1 ) ⩽ n − 1. Since X is a Z-proper ξ-generator of Y, there exists a
C (Z,−)-exact E-triangle

KC
1 −→ X0 −→ C 99K

in ξ with X0 ∈ X and KC
1 ∈ Y. By [4, Lemma 4], we have the following

commutative diagram:

KA
1

��

// KB
1

��

// KC
1

��

//

Y0

��

// Y0 ⊕X0

��

// X0

��

//

A

��

// B

��

// C

��

//

where all rows and columns are C (Z,−)-exact E-triangles in ξ. Since X ⊆ Y,
we have Y0⊕X0 ∈ Y. Note that YZ -res.dim(KB

1 ) ⩽ YZ -res.dim(KA
1 ), the proof
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is similar to YZ -res.dim(A) ⩽ YZ -res.dim(B). By the induction hypothesis, we
have

YZ -res.dim(B) ⩽ YZ -res.dim(KB
1 ) + 1

⩽ YZ -res.dim(KA
1 ) + 1

⩽ n = YZ -res.dim(A). □

Corollary 3.14. Let Y be a Z-resolving subcategory of C admitting a Z-proper
ξ-generator X . For any object C in C and any non-negative integer n. If YZ-
res.dim(C) = n < ∞, then YZ-res.dim(C ⊕ Y ) = n for any object Y in Y.

Proof. By Definition 2.7, we have a C (Z,−)-exact E-triangle

C
( 10 )−→ C ⊕ Y

( 0 1 )−→ Y 99K

in ξ. By Proposition 3.13, we know that YZ -res.dim(C) = YZ -res.dim(C ⊕
Y ). □

Proposition 3.15. Let Y be a Z-resolving subcategory of C admitting a Z-
proper ξ-generator X . If A −→ B −→ C 99K is a C (Z,−)-exact E-triangle in ξ
with A ∈ Y and neither B nor C in Y, then YZ-res.dim(B) = YZ-res.dim(C).

Proof. Assume that YZ -res.dim(B) = n ⩾ 1. Then there exists a C (Z,−)-

exact E-triangle KB
1 −→ Y

′

0 −→ B 99K in ξ with Y
′

0 ∈ Y and YZ -res.dim(KB
1 )

⩽ n−1. By [3, Theorem 3.2] and (ET4)op, we have the following commutative
diagram:

KB
1

// M

��

// A

��

//

KB
1

// Y
′

0

��

// B

��

//

C

��

C

��

where all rows and columns are E-triangles in ξ. Since the second row and
the third column are C (Z,−)-exact, by [4, Lemma 2] and the snake lemma,
we know that the first row and the second column are C (Z,−)-exact. By
Proposition 3.13, we have

YZ -res.dim(C) ⩽ YZ -res.dim(M) + 1 = YZ -res.dim(KB
1 ) + 1

⩽ n = YZ -res.dim(B).
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Conversely, assume that YZ -res.dim(C) = m ⩾ 1. Then there exists a
C (Z,−)-exact E-triangle KC

1 −→ Y0 −→ C 99K in ξ with Y0 ∈ Y and YZ -
res.dim(KC

1 ) ⩽ m − 1. By [3, Theorem 3.2] and Lemma 2.6, we have the
following commutative diagram:

A

��

A

��

KC
1

// W

��

// B

��

//

KC
1

// Y0

��

// C

��

//

where all rows and columns are E-triangles in ξ. Since the third row and the
third column are C (Z,−)-exact, by [4, Lemma 2], we know that the second row
and the second column are C (Z,−)-exact. Since Y is closed under Z-proper
ξ-extensions, then W ∈ Y. Hence, YZ -res.dim(B) ⩽ YZ -res.dim(KC

1 ) + 1 ⩽
m = YZ -res.dim(C). □

The following result gives a sufficient condition such that for an object C in
C , if YZ -res.dim(C) ⩽ n, then all “n-X -syzygies” of C are objects in Y.

Theorem 3.16. Let X ⊆ Z be subcategories of C , and let Y be a Z-resolving
subcategory of C admitting a Z-proper ξ-generator X . For any object C in C
and any positive integer n. If YZ-res.dim(C) ⩽ n < ∞, we have the following.

(1) For any C (Z,−)-exact ξ-exact complex

Kn −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ C

in C with Xi ∈ X , we have that Kn ∈ Y.
(2) If A −→ B −→ C 99K is a C (Z,−)-exact E-triangle in ξ with B ∈ X ,

then YZ-res.dim(A) ⩽ n− 1.

Proof. Assume that YZ -res.dim(C) ⩽ n. By Theorem 3.9(1) =⇒ (2) and take
k = n, there exists a C (Z,−)-exact ξ-exact complex

(3.23) Yn −→ X
′

n−1 −→ · · · −→ X
′

1 −→ X
′

0 −→ C

in C with X
′

i ∈ X and Yn ∈ Y.
(1) Let

Kn −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ C

be a C (Z,−)-exact ξ-exact complex in C with Xi ∈ X . Applying Proposition
3.11 to the C (Z,−)-exact E-triangle C −→ C −→ 0 99K in ξ, we get the
following C (Z,−)-exact ξ-exact complex

Kn −→ Yn ⊕Xn−1 −→ · · · −→ X
′

2 ⊕X1 −→ X
′

1 ⊕X0 −→ X
′

0.
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Since X ⊆ Y and Y is closed under Cocones of Z-proper ξ-deflations, we have
Kn ∈ Y.

(2) By (3.23), we have a C (Z,−)-exact E-triangle KC
1 −→ X

′

0 −→ C 99K in

ξ with X
′

0 ∈ X and YZ -res.dim(KC
1 ) ⩽ n− 1. By [3, Theorem 3.2] and Lemma

2.6, we have the following commutative diagram:

A

��

A

��

KC
1

// W

��

f
// B

��

//

KC
1

// X
′

0

��

// C

��

//

where all rows and columns are E-triangles in ξ. Since the third row and the
third column are C (Z,−)-exact, by [4, Lemma 2], we know that the second
row and the second column are C (Z,−)-exact. Note that B ⊆ X ⊆ Z. Hence,
C (B, f) is an epimorphism. So, the second row is split and W ∼= B⊕KC

1 . Then

the second column yields a C (Z,−)-exact E-triangle A −→ B⊕KC
1 −→ X

′

0 99K
in ξ. Since X

′

0 ⊆ X ⊆ Y, by Proposition 3.13 and Corollary 3.14, we know that

YZ -res.dim(A) = YZ -res.dim(B ⊕KC
1 ) = YZ -res.dim(KC

1 ) ⩽ n− 1. □

Corollary 3.17. Let X ⊆ Z be subcategories of C , and let Y be a Z-resolving
subcategory of C admitting a Z-proper ξ-generator X . If Y is closed under
direct summands, then so is (YZ)

∧
n for any non-negative integer n.

Proof. We proceed by induction on n. The case for n = 0 follows from assump-
tion. Now, let n ⩾ 1, and let C be an object in C with YZ -res.dim(C) ⩽ n
and C = C1 ⊕ C2. By Theorem 3.9(1) =⇒ (2) and take k = n, there exists a
C (Z,−)-exact ξ-exact complex

(3.24) Yn −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ C

in C with Xi ∈ X and Yn ∈ Y. Hence, we have a C (Z,−)-exact E-triangle

KC
1 −→ X0 −→ C 99K

in ξ with X0 ∈ X . Note that both

(3.25) C1

( 10 )−→ C
( 0 1 )−→ C2 99K

and

(3.26) C2

( 10 )−→ C
( 0 1 )−→ C1 99K
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are two C (Z,−)-exact E-triangles in ξ. By [3, Theorem 3.2] and (ET4)op, we
have the following commutative diagram:

KC
1

// M

��

// C1

��

//

KC
1

// X0

��

// C

��

//

C2

��

C2

��

where all rows and columns are E-triangles in ξ. Since the second row and the
third column are C (Z,−)-exact, by [4, Lemma 2] and the snake lemma, we
know that the first row and the second column are C (Z,−)-exact. Hence, we
get a C (Z,−)-exact E-triangle

(3.27) M −→ X0 −→ C2 99K

in ξ. Similarly, we get a C (Z,−)-exact E-triangle

(3.28) N −→ X0 −→ C1 99K

in ξ. By Proposition 3.11, (3.24), (3.25) and (3.28), we get the following
C (Z,−)-exact ξ-exact complex

(3.29) T1 −→ X1 ⊕X0 −→ X0 −→ C2.

By Proposition 3.11, (3.24), (3.26) and (3.27), we get the following C (Z,−)-
exact ξ-exact complex

(3.30) T
′

1 −→ X1 ⊕X0 −→ X0 −→ C1.

By Proposition 3.11, (3.24), (3.26) and (3.29), we get the following C (Z,−)-
exact ξ-exact complex

T2 −→ X2 ⊕X1 ⊕X0 −→ X1 ⊕X0 −→ X0 −→ C1.

By Proposition 3.11, (3.24), (3.25) and (3.30), we get the following C (Z,−)-
exact ξ-exact complex

T
′

2 −→ X2 ⊕X1 ⊕X0 −→ X1 ⊕X0 −→ X0 −→ C2.

Continuing this procedure, we finally get the following two C (Z,−)-exact ξ-
exact complexes
(3.31)

Gn −→
n−1⊕
i=0

Xi −→
n−2⊕
i=0

Xi −→ · · · −→ X2 ⊕X1 ⊕X0 −→ X1 ⊕X0 −→ X0 −→ C1
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and
(3.32)

Hn −→
n−1⊕
i=0

Xi −→
n−2⊕
i=0

Xi −→ · · · −→ X2 ⊕X1 ⊕X0 −→ X1 ⊕X0 −→ X0 −→ C2.

Put Uj =
⊕j

i=0 Xi ⊆ X . By [4, Lemma 4], we get the following C (Z,−)-exact
ξ-exact complex

Gn⊕Hn −→ Un−1⊕Un−1 −→ · · · −→ U2⊕U2 −→ U1⊕U1 −→ U0⊕U0 −→ C.

By Theorem 3.16, we know that Gn ⊕Hn ∈ Y. Since Y is closed under direct
summands, we have Gn ∈ Y and Hn ∈ Y. By (3.31), (3.32), Theorem 3.9
(2) =⇒ (1) and take k = n, we know that YZ -res.dim(C1) ⩽ n and YZ -
res.dim(C2) ⩽ n. □

The following result gives a necessary and sufficient condition such that for
an object A in C , A has a Z-proper X -resolution if and only if A has a Z-proper
Y-resolution.

Theorem 3.18. Let X and Z be subcategories of C , and let Y be a Z-resolving
subcategory of C admitting a Z-proper ξ-generator X . Then res XZ = res YZ .

Proof. It is clear that res XZ ⊆ res YZ . We only prove that res YZ ⊆ res XZ .
Assume that A ∈ res YZ . Then there exists a C (Z,−)-exact E-triangle

B −→ Y −→ A 99K

in ξ with Y ∈ Y and B ∈ res YZ . Since X is a Z-proper ξ-generator of Y,
there exists a C (Z,−)-exact E-triangle

Y1 −→ X1 −→ Y 99K

in ξ with Y1 ∈ Y. By [3, Theorem 3.2] and (ET4)op, we have the following
commutative diagram:

Y1
// M

��

// B

��

//

Y1
// X1

��

// Y

��

//

A

��

A

��

where all rows and columns are E-triangles in ξ. Since the second row and the
third column are C (Z,−)-exact, by the snake lemma and [4, Lemma 2], the
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first row and the second column are C (Z,−)-exact. Since B ∈ res YZ , there
exists a C (Z,−)-exact E-triangle

N −→ Y2 −→ B 99K

in ξ with Y2 ∈ Y and N ∈ res YZ . By [3, Theorem 3.2] and Lemma 2.6, we
have the following commutative diagram:

N

��

N

��

Y1
// W

��

// Y2

��

//

Y1
// M

��

// B

��

//

where all rows and columns are E-triangles in ξ. Since the third row and the
third column are C (Z,−)-exact, by [4, Lemma 2], the second row and the
second column are C (Z,−)-exact. Since Y1, Y2 ∈ Y and Y is closed under
Z-proper ξ-extensions, we have W ∈ Y. Consider the second column in the
second diagram and repeat the above process. We can get a C (Z,−)-exact
E-triangle

T −→ X2 −→ M 99K

in ξ with X2 ∈ X . Continuing this process, we get a C (Z,−)-exact ξ-exact
complex

· · · −→ Xi −→ · · · −→ X2 −→ X1 −→ A.

Hence, A ∈ res XZ . □

4. Applications

In this section, we introduce (X ,Z)-Gorenstein subcategory GXZ(ξ) of C
and prove that GXZ(ξ) is both Z-resolving subcategory and Z-coresolving
subcategory of C . Moreover, we give some applications of the results obtained
in Section 3. First, we give the following definition.

Definition 4.1. Let X and Z be subcategories of C , and let A be an object
of C . A complete XZ(ξ)-resolution of A is both C (Z,−)-exact and C (−,Z)-
exact ξ-exact complex

· · · −→ X1 −→ X0 −→ X0 −→ X1 −→ · · ·

in C with all Xi, X
i ∈ X such that

K1 −→ X0 −→ A 99K and A −→ X0 −→ W 1 99K

are corresponding E-triangles in ξ.
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The (X ,Z)-Gorenstein subcategory GXZ(ξ) of C is defined as

GXZ(ξ) = {A ∈ C |A admits a complete XZ(ξ)-resolution}.

Remark 4.2. (1) If X = Z = P(ξ) (resp., X = Z = I(ξ)), then GXZ(ξ)
coincides with GP(ξ) (resp., GI(ξ)), where GP(ξ) (resp., GI(ξ)) is the full
subcategory of C consisting of ξ-Gorenstein projective (resp., injective) objects
(see [3, Definition 4.8]).

(2) If X = Z, then GXZ(ξ) coincides with GX (ξ), where GX (ξ) is the
Gorenstein subcategories of C (see [4, Definition 7]).

Theorem 4.3. Let X ⊆ Z be subcategories of C . Then we have
(1) GXZ(ξ) is a Z-resolving subcategory of C .
(2) GXZ(ξ) is a Z-coresolving subcategory of C .

Proof. (1) For any object A in GXZ(ξ), there exists a C (Z,−)-exact E-triangle

KA
1 −→ XA

0 −→ A 99K

in ξ with XA
0 ∈ X and KA

1 ∈ GXZ(ξ). Hence, X is a Z-proper ξ-generator for
GXZ(ξ).

Let

A
f−→ B

g−→ C 99K

be a C (Z,−)-exact E-triangle in ξ. Assume that Z ∈ GXZ(ξ). Then there
exists a C (Z,−)-exact and C (−,Z)-exact E-triangle

KC
1 −→ XC

0 −→ C 99K

in ξ with XC
0 ∈ X and KC

1 ∈ GXZ(ξ). By [3, Theorem 3.2] and Lemma 2.6,
we have the following commutative diagram:

KC
1

��

KC
1

��

A // W

��

// XC
0

��

//

A // B

��

// C

��

//

(4.1)

where all rows and columns are E-triangles in ξ. Since the third row is C (Z,−)-
exact, by [4, Lemma 2], the second row is C (Z,−)-exact. Note that XC

0 ∈ X ⊆
Z. Hence, the second row is split and C (−,Z)-exact. Since the second row and
the third column are both C (Z,−)-exact and C (−,Z)-exact, by [4, Lemma 3],
all rows and columns are both C (Z,−)-exact and C (−,Z)-exact in (4.1).

Claim 1: If A,C ∈ GXZ(ξ), then B ∈ GXZ(ξ).
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Since A,C ∈ GXZ(ξ), there exist C (Z,−)-exact and C (−,Z)-exact E-
triangles

KA
1 −→ XA

0 −→ A 99K, A −→ X0
A −→ K1

A 99K

KC
1 −→ XC

0 −→ C 99K, C −→ X0
C −→ K1

C 99K

with XA
0 , X0

A, X
C
0 , X0

C ∈ X and KA
1 ,K1

A,K
C
1 ,K1

C ∈ GXZ(ξ). By [4, Lemma
4], we have the following commutative diagram:

KA
1

��

// KB
1

��

// KC
1

��

//

XA
0

��

// XA
0 ⊕XC

0

��

// XC
0

��

//

A

��

// B

��

// C

��

//

where all rows and columns are both C (Z,−)-exact and C (−,Z)-exact E-
triangles in ξ. By [4, Lemma 5], we have the following commutative diagram:

A

��

// B

��

// C

��

//

X0
A

��

// X0
A ⊕X0

C

��

// X0
C

��

//

K1
A

��

// K1
B

��

// K1
C

��

//

where all rows and columns are both C (Z,−)-exact and C (−,Z)-exact E-
triangles in ξ. Continuing this process, we get a complete XZ(ξ)-resolution of
B. Hence, B ∈ GXZ(ξ).

Claim 2: If B,C ∈ GXZ(ξ), then A ∈ GXZ(ξ).
Since B,C ∈ GXZ(ξ), B and C both have a C (Z,−)-exact and C (−,Z)-

exact X -coresolution. By Proposition 3.12, we have a C (Z,−)-exact and
C (−,Z)-exact ξ-exact complex

(4.2) A −→ X0
A −→ X1

A −→ · · · −→ Xn
A −→ · · · .

Since B ∈ GXZ(ξ), there exists a C (Z,−)-exact and C (−,Z)-exact E-triangle
KB

1
u−→ XB

0
v−→ B

β
99K in ξ with XB

0 ∈ X and KB
1 ∈ GXZ(ξ). By [4, Lemma
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3] and (ET4)op, we have the following commutative diagram:

KB
1

e // M

s

��

h // A

f

��

f∗β
//

KB
1 u

// XB
0

t

��

v
// B

g

��

β
//

C

γ

��

C

δ

��

(4.3)

where all rows and columns are both C (Z,−)-exact and C (−,Z)-exact E-
triangles in ξ. Since C ∈ GXZ(ξ), there exists a C (Z,−)-exact and C (−,Z)-

exact E-triangle KC
1

p−→ XC
0

q−→ C
η

99K in ξ with XC
0 ∈ X and KC

1 ∈ GXZ(ξ).
Since the second column is C (Z,−)-exact in (4.3) and X ⊆ Z, we have the
following commutative diagram:

KC
1

x

��

p
// XC

0

y

��

q
// C

η
//

M
s // XB

0
t // C

γ
//

with x∗η = γ. By [9, Proposition 1.20], we have an E-triangle

(4.4) KC
1

(−x
p

)
−→ M ⊕XC

0

( s y )−→ XB
0

t∗η
99K

in C . Hence, we can construct the following commutative diagram:

KC
1

(−x
p

)
// M ⊕XC

0

( 0 1 )

��

( s y )
// XB

0

t

��

t∗η
//

KC
1

p
// XC

0

q
// C

η
//

(4.5)

Since the second row is in ξ and ξ is closed under base change, the E-triangle
(4.4) is in ξ. Note that the second row is both C (Z,−)-exact and C (−,Z)-
exact. By [4, Lemma 2], the E-triangle (4.4) is C (Z,−)-exact. Applying
C (−,Z) to (4.5), by the snake lemma, the E-triangle (4.4) is C (−,Z)-exact.
Since KC

1 ∈ GXZ(ξ) and XB
0 ∈ X ⊆ GXZ(ξ), by Claim 1, M ⊕XC

0 ∈ GXZ(ξ).
Hence, M⊕XC

0 has a X -resolution which is C (Z,−)-exact and C (−,Z)-exact.
Applying Proposition 3.11 to the E-triangle XC

0 −→ M ⊕XC
0 −→ M 99K, we

have a C (Z,−)-exact and C (−,Z)-exact ξ-exact complex

· · · −→ XM
n −→ · · · −→ XM

1 −→ XM
0 −→ M
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with XM
i ∈ X . Since KB

1 ∈ GXZ(ξ), then KB
1 has a X -resolution which is

C (Z,−)-exact and C (−,Z)-exact. Applying Proposition 3.11 to the E-triangle
KB

1 −→ M −→ A 99K, we have a C (Z,−)-exact and C (−,Z)-exact ξ-exact
complex

(4.6) · · · −→ XA
n −→ · · · −→ XA

1 −→ XA
0 −→ A

with XA
i ∈ X . Combining (4.2) and (4.6), we get a complete XZ(ξ)-resolution

of A. Hence, A ∈ GXZ(ξ). □

By Remark 4.2 and Theorem 4.3, we have the following corollary.

Corollary 4.4. Let X be a subcategory of C . Then GX (ξ) is a X -resolving
and X -coresolving subcategory of C . In particular, GP(ξ) is a P(ξ)-resolving
and P(ξ)-coresolving subcategory of C , GI(ξ) is a I(ξ)-resolving and I(ξ)-
coresolving subcategory of C .

Corollary 4.5 ([3, Theorem 4.16]). Let A −→ B −→ C 99K be an E-triangle
in ξ with C ∈ GP(ξ). Then A ∈ GP(ξ) if and only if B ∈ GP(ξ).

Proof. By Corollary 4.4, we know that GP(ξ) is a P(ξ)-resolving subcategory
of C , thus GP(ξ) are closed under ξ-extensions and Cocones of ξ-deflations. □

Dually, we have the following.

Corollary 4.6. Let A −→ B −→ C 99K be an E-triangle in ξ with A ∈ GI(ξ).
Then B ∈ GI(ξ) if and only if C ∈ GI(ξ).

Corollary 4.7. Let A −→ B −→ C 99K be a C (−,P(ξ))-exact E-triangle in ξ
with A ∈ GP(ξ). Then B ∈ GP(ξ) if and only if C ∈ GP(ξ).

Proof. By Corollary 4.4, we know that GP(ξ) is a P(ξ)-coresolving subcategory
of C , thus P(ξ) are closed under P(ξ)-coproper ξ-extensions and Cones of P(ξ)-
coproper ξ-inflations. □

Dually, we have the following.

Corollary 4.8. Let A −→ B −→ C 99K be a C (I(ξ),−)-exact E-triangle in ξ
with C ∈ GI(ξ). Then A ∈ GI(ξ) if and only if B ∈ GI(ξ).

Theorem 4.9. Let X ⊆ Z be subcategories of C with X is closed under direct
summands, and let C be an object in C with XZ-res.dim(C) < ∞. Then

(GXZ(ξ))Z-res.dim(C) = XZ-res.dim(C).

Proof. Since X ⊆ GXZ(ξ), we have (GXZ(ξ))Z -res.dim(C) ⩽ XZ -res.dim(C).
Next, we prove that XZ -res.dim(C) ⩽ (GXZ(ξ))Z -res.dim(C). Assume that
XZ -res.dim(C) = m < ∞ and (GXZ(ξ))Z -res.dim(C) = n < ∞. Then there
exists a C (Z,−)-exact ξ-exact complex

Xm −→ Xm−1 −→ · · · −→ X1 −→ X0 −→ C
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with all Xj ∈ X . If m > n, we have the following two ξ-exact complexes

(4.7) Kn −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ C

and

(4.8) Xm −→ Xm−1 −→ · · · −→ Xn −→ Kn.

Hence, we get the following E-triangle
Ki+1 −→ Xi −→ Ki 99K

in ξ with Km = Xm and n ⩽ i ⩽ m − 1. By Theorem 3.16, we know that
Kn ∈ GXZ(ξ))Z in (4.7). Since (GXZ(ξ))Z is closed under Cocones of Z-
proper ξ-deflations and Xj ∈ X ⊆ GXZ(ξ), we have Ki ∈ GXZ(ξ) for all
n ⩽ i ⩽ m − 1. Since Km−1 ∈ GXZ(ξ), there exists a C (Z,−)-exact and
C (−,Z)-exact E-triangle

G −→ X −→ Km−1 99K

in ξ with X ∈ X and G ∈ GXZ(ξ). By [3, Theorem 3.2] and Lemma 2.6, we
have the following commutative diagram:

G

��

G

��

Xm
// H

��

// X

��

//

Xm
// Xm−1

��

// Km−1

��

//

where all rows and columns are E-triangles in ξ. Since the third row is C (Z,−)-
exact, by [4, Lemma 2], the second row is C (Z,−)-exact. Note that X ∈ X ⊆
Z. Hence, the second row is split and C (−,Z)-exact. Applying C (−,Z)-exact
to the above commutative diagram, by snake lemma, we know that the third
row is C (−,Z)-exact. Hence, the third row is split and Xm−1

∼= Xm ⊕Km−1.
Since X is closed under direct summands, we have Km−1 ∈ X . Repeating this
process, we know that Kn ∈ X and (GXZ(ξ))Z -res.dim(C) ⩽ n, which is a
contradiction. Hence, m ⩽ n and XZ -res.dim(C) ⩽ (GXZ(ξ))Z -res.dim(C).

□

For any object C in C , the definitions of the ξ-projective dimension ξ-pd(C)
and ξ-G projective dimension ξ-Gpd(C) and their duality can be found in [3].

Corollary 4.10. Let C be an object in C with ξ-pd(C) < ∞ (resp., ξ-id(C) <
∞). Then ξ-Gpd(C) = ξ-pd(C) (resp., ξ-Gid(C) = ξ-id(C)).

Proof. Note that P(ξ) and I(ξ) are closed under direct summands. Applying
[3, Proposition 5.2] and its duality, the next proof is similar to Theorem 4.9. □
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Next, we give some applications of the results obtained in Section 3. The
arguments here are similar to that in Section 3, so we omit them.

Proposition 4.11. For any object M in C and any positive integer n, the
following are equivalent:

(1) ξ-Gpd(M) ⩽ n.
(2) For any integer k with 1 ⩽ k ⩽ n, there exists a ξ-exact complex

Tn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M

such that Ti ∈ P(ξ) if 0 ⩽ i < k and Pj ∈ GP(ξ) if j ⩾ k.
(3) For any integer k with 0 ⩽ k ⩽ n− 1, there exists a ξ-exact complex

Tn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M

such that Tk ∈ P(ξ) and other Ti ∈ GP(ξ).
(4) For any integer k with 0 ⩽ k ⩽ n− 1, there exists a ξ-exact complex

Yn −→ Tn−1 −→ · · · −→ T1 −→ T0 −→ M

with Yn ∈ GP(ξ), such that Tk ∈ GP(ξ) and other Ti ∈ P(ξ).

Dually, we have the following.

Proposition 4.12. For any object M in C and any positive integer n, the
following are equivalent:

(1) GP(ξ)-cores.dim(M) ⩽ n.
(2) For any integer k with 1 ⩽ k ⩽ n, there exists a ξ-exact complex

M −→ T0 −→ T1 −→ · · · −→ Tn−1 −→ Tn

such that Ti ∈ GP(ξ) if 0 ⩽ i < k and Pj ∈ P(ξ) if j ⩾ k.
(3) For any integer k with 1 ⩽ k ⩽ n, there exists a ξ-exact complex

M −→ T0 −→ T1 −→ · · · −→ Tn−1 −→ Tn

such that Tk ∈ P(ξ) and other Ti ∈ GP(ξ).
(4) For any integer k with 1 ⩽ k ⩽ n, there exists a ξ-exact complex

M −→ T0 −→ T1 −→ · · · −→ Tn−1 −→ Tn

with T0 ∈ GP(ξ), such that Tk ∈ GP(ξ) and other Ti ∈ P(ξ).

Proposition 4.13. For any E-triangle A −→ B −→ C 99K in ξ with C ∈
GP(ξ), we have ξ-Gpd(A) = ξ-Gpd(B).

Corollary 4.14. For any object C in C and any non-negative integer n, if
ξ-Gpd(C) = n < ∞, then ξ-Gpd(C ⊕ Y ) = n for any object Y in GP(ξ).

Proposition 4.15. For any E-triangle A −→ B −→ C 99K in ξ with A ∈
GP(ξ) and neither B nor C in GP(ξ), we have ξ-Gpd(B) = ξ-Gpd(C).
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Proposition 4.16. For any object C in C and any positive integer n, if
ξ-Gpd(C) ⩽ n < ∞, we have the following.

(1) For any ξ-exact complex

Kn −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ C

in C with Xi ∈ P(ξ), we have that Kn ∈ GP(ξ).
(2) For any E-triangle A −→ B −→ C 99K in ξ with B ∈ P(ξ), we have

ξ-Gpd(A) ⩽ n− 1.

Proposition 4.17. res P(ξ) = res GP(ξ).
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