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SOME ALGEBRAS HAVING RELATIONS LIKE THOSE FOR

THE 4-DIMENSIONAL SKLYANIN ALGEBRAS

Alexandru Chirvasitu and S. Paul Smith

Abstract. The 4-dimensional Sklyanin algebras are a well-studied 2-

parameter family of non-commutative graded algebras, often denoted
A(E, τ), that depend on a quartic elliptic curve E ⊆ P3 and a trans-

lation automorphism τ of E. They are graded algebras generated by four
degree-one elements subject to six quadratic relations and in many im-

portant ways they behave like the polynomial ring on four indeterminates

except that they are not commutative. They can be seen as “elliptic ana-
logues” of the enveloping algebra of gl(2,C) and the quantized enveloping

algebras Uq(gl2).

Recently, Cho, Hong, and Lau conjectured that a certain 2-parameter
family of algebras arising in their work on homological mirror symmetry

consists of 4-dimensional Sklyanin algebras. This paper shows their con-

jecture is false in the generality they make it. On the positive side, we
show their algebras exhibit features that are similar to, and differ from,

analogous features of the 4-dimensional Sklyanin algebras in interesting

ways. We show that most of the Cho-Hong-Lau algebras determine, and
are determined by, the graph of a bijection between two 20-point subsets

of the projective space P3.
The paper also examines a 3-parameter family of 4-generator 6-relator

algebras admitting presentations analogous to those of the 4-dimensional

Sklyanin algebras. This class includes the 4-dimensional Sklyanin alge-
bras and most of the Cho-Hong-Lau algebras.

1. Introduction

1.1. This paper examines three families of graded algebras with four gen-
erators and six quadratic relations. The only commutative algebra in these
families is the polynomial ring on 4 variables. All algebras in these families
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are, like the polynomial ring on 4 variables, generated by 4 elements subject to
6 homogeneous quadratic relations.

The members of the first of these families are denoted by A(α, β, γ), depend-
ing on a parameter (α, β, γ) ∈ k3, where k is a field that will be fixed throughout
the paper. They are generated by x0, x1, x2, x3 subject to the relations:

(1.1)


x0x1 − x1x0 = α(x2x3 + x3x2), x0x1 + x1x0 = x2x3 − x3x2,
x0x2 − x2x0 = β(x3x1 + x1x3), x0x2 + x2x0 = x3x1 − x1x3,
x0x3 − x3x0 = γ(x1x2 + x2x1), x0x3 + x3x0 = x1x2 − x2x1.

Among these algebras, those for which

(1.2) α+ β + γ + αβγ = 0 and {α, β, γ} ∩ {0,±1} = ∅,

are so starkly different from the rest that we consider them as a separate family.
These constitute the second of our three families and are called non-degenerate
4-dimensional Sklyanin algebras. Algebras in the third family are denoted by
R(a, b, c, d), depending on a parameter (a, b, c, d) that is required to lie on the
quadric {ad+ bc = 0} in the projective space P3. They are defined in 1.7.

The algebras R(a, b, c, d) were discovered by Cho, Hong, and Lau in their
work on mirror symmetry [8], and the motivation for this paper is their conjec-
ture that these are 4-dimensional Sklyanin algebras. We prove their conjecture
is false in the generality in which it is made, but on the positive side

(1) for a Zariski-dense open subset of points on the quadric {ad+ bc = 0},
R(a, b, c, d) is isomorphic to A(α, β, γ) for some (α, β, γ), but (α, β, γ)
does not always satisfy the condition α+ β + γ + αβγ = 0;

(2) there are two lines ℓ1, ℓ2 ⊆ {ad + bc = 0} such that R(a, b, c, d) is
isomorphic to A(α, 1,−1) for all (a, b, c, d) ∈ ℓ1 ∪ ℓ2 − {12 points};

(3) the automorphism group of almost all R(a, b, c, d) has a subgroup iso-
morphic to the Heisenberg group of order 43.

The non-degenerate Sklyanin algebras may be parametrized by pairs (E, τ)
consisting of an elliptic curve E and a translation automorphism τ : E →
E. We write A(E, τ) for the Sklyanin algebra corresponding to this data. It
is striking that the translation automorphism for the R(a, b, c, d)’s that are
non-degenerate Sklyanin algebras has order 4; i.e., if (a, b, c, d) ∈ ℓ1 ∪ ℓ2 −
{12 points}, then R(a, b, c, d) ∼= A(E, τ) for some elliptic curve E and some τ
having order 4 (Propositions 5.2 and 5.3).

1.2. A striking feature of the algebras R(a, b, c, d) is that almost all of them
determine, and are determined by, a set of 20 points in the product P3 × P3 of
two copies of the three-dimensional projective space.

1.3. Because Sklyanin algebras, which appeared first in [18, 19], have played
such a large role in the development of non-commutative algebra and algebraic
geometry over the past thirty years (see [15,20–22,25] for example), it is sensible
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to examine the larger class of algebrasA(α, β, γ) defined by the “same” relations
minus the constraint α+ β + γ + αβγ = 0.

We do not undertake an exhaustive study of the algebras A(α, β, γ) when α+
β+γ+αβγ ̸= 0 but it appears to us that there are interesting questions about
them that might be fruitfully pursued. We mention some of these questions in
1.10.

1.4. We use the notation [x, y] = xy − yx and {x, y} = xy + yx.

1.5. The algebras A(α, β, γ). Let k be an arbitrary field and α1, α2, α3 ∈ k.
Define A(α1, α2, α3), or simply A, to be the free algebra k⟨x0, x1, x2, x3⟩modulo
the six relations:

(1.3)
[x0, xi] = αi{xj , xk}, {x0, xi} = [xj , xk],

(i, j, k) a cyclic permutation of (1, 2, 3).

We always consider A as an N-graded k-algebra with deg{x0, x1, x2, x3} = 1.
Thus, A is the quotient of the free algebra TV/(R) = k⟨x0, x1, x2, x3⟩/(R),
where V = span{x0, x1, x2, x3} and R ⊆ V ⊗2 is the linear span of the six
elements in V ⊗2 corresponding to the relations (1.3).

1.6. Degenerate and non-degenerate 4-dimensional Sklyanin alge-
bras. Suppose α+β+γ+αβγ = 0. We call A(α, β, γ) a 4-dimensional Sklyanin
algebra in this case. If, in addition, {α, β, γ} ∩ {0,±1} = ∅ we call A(α, β, γ)
a non-degenerate 4-dimensional Sklyanin algebra. If α+ β + γ + αβγ = 0 and
{α, β, γ}∩{0,±1} ≠ ∅, we call A(α, β, γ) a degenerate 4-dimensional Sklyanin
algebra.

By [21], non-degenerate 4-dimensional Sklyanin algebras are Noetherian do-
mains having the same Hilbert series as the polynomial ring in 4 variables. By
[21] and [15], they have excellent homological properties. Their representation
theory is intimately related to the geometry of (E ⊆ P3, τ).

Some degenerate 4-dimensional Sklyanin algebras are closely related to bet-
ter known algebras. For instance, the algebra A = A(0, 0, 0) has a degree-one
central element, z, such that A/(z − 1) ∼= A[z−1]0 ∼= U(so(3,k)), the envelop-
ing algebra of the Lie algebra so(3,k). Similarly, if k = C and β ̸= 0, then
A = A(0, β,−β) has a degree-two central element Ω such that A[Ω−1]0 ∼=
Uq(sl(2,C)), a quantized enveloping algebra of sl(2,C).

If α+ β + γ + αβγ = αβγ = 0, then the structure of A(α, β, γ) is described
in [21, §1.4].

1.7. The algebras of Cho, Hong, and Lau. Let (a, b, c, d) ∈ k4. We write
R(a, b, c, d), or simply R, for the free algebra k⟨x1, x2, x3, x4⟩ modulo the rela-
tions:

(R1) ax4x3 + bx3x4 + cx3x2 + dx4x1 = 0,
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(R2) ax3x2 + bx2x3 + cx4x3 + dx1x2 = 0,

(R3) ax2x1 + bx1x2 + cx1x4 + dx2x3 = 0,

(R4) ax1x4 + bx4x1 + cx2x1 + dx3x4 = 0,

(R5) ax3x1 − ax1x3 + cx24 − cx22 = 0,

(R6) bx4x2 − bx2x4 + dx23 − dx21 = 0.

Since a, b, c, and d enter into the relations in a homogeneous way, the algebra
R(a, b, c, d) depends only on (a, b, c, d) as a point in P3. If we impose the condi-
tion that ac+ bd = 0, we obtain a 2-dimensional family of algebras R(a, b, c, d)
parametrized by a quadric (isomorphic to P1 × P1) in P3. Cho, Hong, and
Lau conjecture that, when ac+ bd = 0, R is a 4-dimensional Sklyanin algebra
[8, Conj. 8.11].

Although only a 1-parameter family of the R(a, b, c, d) are Sklyanin algebras,
we find it remarkable that almost all of them (Zariski-densely many, that is)
have the “same” relations as the 4-dimensional Sklyanin algebras. We do not
understand the deeper reason for this; our proof is just a calculation. We
also find it remarkable that the translation automorphism for those that are
Sklyanin algebras has order 4—the only translation automorphisms of a degree-
four elliptic curve in P3 that extend to automorphisms of the ambient P3 are the
translations of order 0, 2, and 4. We do not know in what way, in the context
of the work of Cho-Hong-Lau, those R(a, b, c, d) that are Sklyanin algebras are
special.

1.8. Results about A(α, β, γ). Suppose αβγ ̸= 0. In Section 2 we show
that the Heisenberg group of order 43 acts as automorphisms of A(α, β, γ). In
Proposition 2.4, we determine exactly when two of these algebras are isomor-
phic to each other.

In Section 3 we give a geometric interpretation of the relations defining
A(α, β, γ). To do this we first write A(α, β, γ) as TV/(R), the quotient of the
tensor algebra TV on a 4-dimensional vector space V by the ideal generated
by a 6-dimensional subspace R of V ⊗2. We then consider elements in V ⊗ V
as forms of bi-degree (1, 1) on the product P(V ∗) × P(V ∗) of two copies of
projective 3-space. We now define the closed subscheme Γ ⊆ P(V ∗) × P(V ∗)
to be the vanishing locus of the elements in R. Proposition 3.3 shows that Γ
is finite if and only if αβγ ̸= 0 and α+ β + γ + αβγ ̸= 0. Propositions 3.3 and
3.4 show that in that case

(1) Γ consists of 20 distinct points;
(2) Γ is the graph of a bijection between 20-point subsets of P(V ∗);
(3) R = {f ∈ V ⊗2 | f |Γ = 0}.

1.9. Centers. Theorem 2 in [18] states that two explicitly given degree-two
homogeneous elements, which are denoted there by K0 and K1, belong to
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the center of the 4-dimensional Sklyanin algebra. Although Sklyanin writes
that it is “straightforward” to prove these elements are central, the details
are left to the reader. We and others have found the calculations less than
straightforward.1 Sklyanin says that an alternative proof can be given by using
a lemma in his paper [14] with Kulish. Presumably, the relevant lemma is
equation (5.7) in [14]. However, “due to space limitations [they] do not present
[t]here the complete proof of (5.7)”. We have been unable to find a complete
proof of [18, Thm. 2] in the literature, so we give a direct proof that K0 and
K1 are central in Proposition 6.1 below. We do not use the same notation as
Sklyanin, so in this introduction we label the elements in Proposition 6.1 by
Ω0 and Ω1.

For most 4-dimensional Sklyanin algebras the elements K0 and K1, or equiv-
alently Ω0 and Ω1, generate the center of the algebra. In sharp contrast, when
αβγ ̸= 0 and α + β + γ + αβγ ̸= 0 the elements x20, x

2
1, x

2
2, and x

2
3 belong to

the center of A(α, β, γ) (Proposition 6.2).
Cho, Hong, and Lau write down two degree-two elements in R(a, b, c, d) that

they conjecture belong to the center of R(a, b, c, d). We verify their conjecture
in Proposition 6.3 and Corollary 6.5.

It is interesting to compare the proof of these results about the centers to the
proof that the Casimir elements in the enveloping algebras U(sl2) and Uq(sl2)
belong to the center. The latter proofs are absolutely straightforward, whereas
the computations involved in describing the centers of A(α, β, γ) are far less
routine because these algebras do not have a PBW basis (or, apparently, any
basis that makes computation routine). See however, the notion of an I-algebra
in [23].

1.10. Some questions and remarks about A(α, β, γ). Computer calcula-
tions by Frank Moore suggest that the dimensions of the homogeneous compo-
nents A(α, β, γ)n are 1, 4, 10, 16, 19, 20, 20, 20, . . . when α+β+γ+αβγ ̸= 0. Is
this true? If so, then for a generic linear combination Ω of the central elements
x20, x

2
1, x

2
2, x

2
3 ∈ A(α, β, γ)2 the localization A[Ω−1]0 is a finite dimensional alge-

bra having dimension 20. What is the structure of this algebra? Is it a product
of four copies of k and four copies of the 2 × 2 matrix algebra M2(k) or is it
more interesting?

We do not know if A(α, β, γ) is a Koszul algebra (Sklyanin algebras are) but
whether it is or is not its quadratic dual A(α, β, γ)! might be interesting.

We show in Section 3, when α + β + γ + αβγ ̸= 0 and αβγ ̸= 0, that
the algebra A(α, β, γ) determines, and is determined by, a configuration of 20

1The problem of showing that K0 and K1 are central is mentioned in a talk

given by Tom Koornwinder at Nijmegen on 12 November 2012—see https://staff.

science.uva.nl/t.h.koornwinder/art/sheets/SklyaninAlgebra1.pdf, retrieved on 01-20-

2017. Koornwinder says that part of the proof is “straightforward” and appeals to the Math-

ematica package NCAlgebra 4.0.4 at http://www.math.ucsd.edu/~ncalg/ for the remainder
of the proof.
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points in P3×P3 that is the graph of a bijection between two 20-point elements
of P3. We do not understand this configuration but the representation theory
of A(α, β, γ) and these related algebras is governed by it. The details of this
are likely to be interesting and novel.

It would be interesting to understand how the configuration of 20 points
relates to the features of R(a, b, c, d) that are relevant to the work of Cho,
Hong, and Lau.

The point modules for a non-degenerate Sklyanin algebra A(E, τ) are para-
metrized by E ⊆ P3 together with 4 additional points. However, the other
A(α, β, γ) have only 4 point modules (which are “the same” as the 4 special
point modules for the Sklyanin algebra). Does QGr

(
A(α, β, γ)

)
have exactly

8 fat point modules of multiplicity 2? (The definitions of point modules and
fat point modules can be found in any paper on the 4-dimensional Sklyanin
algebras.) Presumably, the fact that the automorphism θ defined in 3.3 has
“order” 2 will be relevant.

Over C, the structure constants α, β, γ for the 4-dimensional Sklyanin al-
gebras have a nice description in terms of the theta functions ϑ00, ϑ01, ϑ10,
ϑ11 [21, §2.10]. Indeed, Sklyanin’s original definition involved Jacobi’s elliptic
functions sn, cn, dn. Furthermore, the condition α + β + γ + αβγ = 0 is a
consequence of Riemann’s quartic identity ϑ400(z) + ϑ401(z) = ϑ401(z) + ϑ410(z).
It is possible that a better understanding of the algebras R(a, b, c, d) might
be obtained by realizing a, b, c, d as values of degenerations of elliptic func-
tions. The expressions in Proposition 5.2(2) and the calculations in its proof
are reminiscent of certain identities involving ϑ00, ϑ01, ϑ10, ϑ11.

Acknowledgements. We thank Frank Moore whose computer calculations
involving the algebras A(α, β, γ) defined in (1.3) were of great assistance to us
at an early stage of this project. His calculations showed that over certain finite
fields the elements x20, . . . , x

2
3 belong to the center of A(α, β, γ) when αβγ ̸= 0

and α + β + γ + αβγ ̸= 0. Based on those calculations we then proved the
centrality of those elements over all fields (Proposition 6.2).

We are also grateful for the anonymous referee’s comments and suggestions;
they have certainly contributed to the manuscript’s improvement.

2. Algebras A(α, β, γ) with a Sklyanin-like presentation

2.1. Notation. Throughout this paper k denotes a field whose characteristic
is not 2, and i denotes a fixed square root of −1.

Whenever we use parameters α, β, γ ∈ k we will assume they have square
roots a, b, c ∈ k.

We fix a 4-dimensional k-vector space V . Always, x0, x1, x2, x3 will denote
a basis for V .

2.1.1. We write TV for the tensor algebra on V . Thus TV is the free alge-
bra k⟨x0, x1, x2, x3⟩. We always consider TV as an Z-graded k-algebra with



SKLYANIN-TYPE RELATIONS 751

deg(V ) = 1. All the algebras in this paper are of the form A = TV/(R) for
various 6-dimensional subspaces R of V ⊗2.

2.1.2. Let α, β, γ ∈ k. The algebra A(α, β, γ) is the free algebra TV modulo
the relations in (1.1).

2.1.3. We will often write (α1, α2, α3) = (α, β, γ). In Section 2 and Section 3,
a, b, c will denote fixed square roots of α, β, γ. We will often write (a1, a2, a3) =
(a, b, c).

2.1.4. Let A be a Z-graded k-algebra. We write Autgr(A) for the group of
graded k-algebra automorphisms of A.

If λ ∈ k×, ϕλ denotes the automorphism of A that is multiplication by λn on
An. The map k× → Autgr(A), λ 7→ ϕλ, is an injective group homomorphism
whose image lies in the center. We will often identify λ with ϕλ. If ψ ∈ Aut(A),
we will write ψm = λ if ψm = ϕλ and λψ for ϕλψ.

2.1.5. Suppose a, b, c ∈ k×. We define ψ1, ψ2, ψ3 ∈ GL(V ) by declaring that
ψi(xj) is the entry in row ψi and column xj in Table 1.

Table 1. Automorphisms ψ1, ψ2, ψ3.

x0 x1 x2 x3

ψ1 bcx1 −ix0 −ibx3 −cx2
ψ2 acx2 −ax3 −ix0 −icx1
ψ3 abx3 −iax2 −bx1 −ix0

In the notation of 2.1.3, if (i, j, k) is a cyclic permutation of (1, 2, 3), then

ψi(x0) = ajakxi, ψi(xi) = −ix0, ψi(xj) = −iajxk, and ψi(xk) = −akxj .

2.1.6. The Heisenberg group of order 43. The Heisenberg group of order 43 is

H4 := ⟨ε1, ε2, δ | ε41 = ε42 = δ4 = 1, δε1 = ε1δ, ε2δ = δε2, ε1ε2 = δε2ε1⟩.

2.2. By [11] and [22, pp. 64–65], for example, the Heisenberg groupH4 acts as
graded k-algebra automorphisms of the 4-dimensional Sklyanin algebras when
k = C. The next result records the fact that H4 acts as graded k-algebra
automorphisms of A(α, β, γ) whenever αβγ ̸= 0 and k is a field having square
roots of α, β, γ, and −1.

Proposition 2.1. Suppose αβγ ̸= 0. Fix ν1, ν2, ν3 ∈ k× such that aν21 =
bν22 = cν23 = −iabc.

(1) The maps ψ1, ψ2, ψ3 : V → V in Table 1 extend to k-algebra automor-
phisms of A(α, β, γ).
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(2) There is an injective homomorphism H4 → Autgr(A) given by

ε1 7→ ν−1
1 ψ1, ε2 7→ ν−1

2 ψ2.

Under this map, δ 7→ ϕi, the automorphism that is multiplication by in

on A(α, β, γ)n.
(3) The subgroup of Autgr(A) generated by γ1 := ε21 and γ2 := ε22 is isomor-

phic to Z2×Z2. The value of γi(xj) is the entry in row γi and column
xj of Table 2 below (in that table we also define an automorphism γ3).

Table 2. The action of Z2 × Z2 as automorphisms of A.

x0 x1 x2 x3
γ1 x0 x1 −x2 −x3
γ2 x0 −x1 x2 −x3
γ3 x0 −x1 −x2 x3

Proof. Let (i, j, k) be a cyclic permutation of (1, 2, 3) and let λ0, λi, λj , λk ∈ k×.
In [19, Prop. 4], Sklyanin observed that the linear map ψ : V → V acting on
x0, xi, xj , xk as

x0 xi xj xk
ψ λ0xi λix0 λjxk λkxj

extends to an automorphism of the Sklyanin algebra if and only if

(2.1)
λ0λi
λjλk

= −1, λ0λj
λkλi

= −αj , and
λ0λk
λiλj

= αk.

A straightforward calculation shows that ψ extends to an automorphism of
A(α, β, γ) without any restriction on α, β, γ other than αβγ ̸= 0 if and only
if (2.1) holds. The maps ψ1, ψ2, and ψ3 satisfy these conditions so extend to
graded k-algebra automorphisms of A.

It is easy to check that ψ1ψ2 = δψ2ψ1, ψ2ψ3 = δψ3ψ2, and ψ3ψ1 = δψ1ψ3.
It follows that ε1ε2 = δε2ε1.

It is easy to check that γ1 and γ2 act on x0, x1, x2, x3 as in Table 2. Hence
ε41 = ε42 = 1. Simple calculations show that ψ2

1 = −ibcγ1, ψ2
2 = −iacγ2, and

ψ2
3 = −iabγ3, where γ1, γ2, and γ3 are the automorphisms in Table 2. We leave

the rest of the proof to the reader. □

2.2.1. The maps γi ∈ GL(V ) given by Table 2 extend to graded k-algebra
automorphisms of A(α, β, γ) for all α, β, γ ∈ k.
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2.3. In the next result, whose proof we omit, ([A,A]) denotes the ideal in A
generated by all commutators ab− ba, a, b ∈ A. Thus, A/([A,A]) is the largest
commutative quotient of A.

Proposition 2.2. Suppose αβγ ̸= 0. Let A = A(α, β, γ).

(1) As a quotient of the polynomial ring k[x0, x1, x2, x3],
A

([A,A])
=

k[x0, x1, x2, x3]
(x1, x2, x3) ∩ (x0, x2, x3) ∩ (x0, x1, x3) ∩ (x0, x1, x2)

.

(2) As a subscheme of P(V ∗),

Proj

(
A

([A,A])

)
={e0=(1, 0, 0, 0), e1=(0, 1, 0, 0), e2=(0, 0, 1, 0), e3=(0, 0, 0, 1)}.

(3) A has exactly four graded quotients that are polynomial rings in one
variable, namely the quotients by the ideals (x1, x2, x3), (x0, x2, x3),
(x0, x1, x3), and (x0, x1, x2).

Lemma 2.3. There are algebra isomorphisms

A(α, β, γ) ∼= A(β, γ, α) ∼= A(γ, α, β)

∼= A(−α,−γ,−β) ∼= A(−β,−α,−γ) ∼= A(−γ,−β,−α).

Proof. There is an isomorphism A(α, β, γ)
∼−→ A(β, γ, α) given by x0 7→ x0

and xi 7→ xi+1 for i ∈ {1, 2, 3} = Z/3. Similarly, A(β, γ, α) ∼= A(γ, α, β). Since

[x0,−x1] = −α{x3, x2}, [x0, x3] = −γ{x2,−x1}, [x0, x2] = −β{−x1, x3},

and

{x0,−x1} = [x3, x2], {x0, x3} = [x2,−x1], {x0, x2} = [−x1, x3],

there is an isomorphism A(α, β, γ)
∼−→ A(−α,−γ,−β) given by x0 7→ x0,

x1 7→ −x1, x2 7→ x3, and x3 7→ −x2. □

Proposition 2.4. Suppose αβγ ̸= 0 and α′β′γ′ ̸= 0. Then A(α, β, γ) ∼=
A(α′, β′, γ′) as graded k-algebras if and only if (α′, β′, γ′) is a cyclic permutation
of either (α, β, γ) or (−α,−β,−γ).

Proof. (⇐) This is the content of Lemma 2.3.
(⇒) Before starting the proof we introduce some notation. If (p, q, r, s) is a

permutation of (0, 1, 2, 3), we define

⟨p, q, r, s⟩A := (µ1ν1, µ2ν2, µ3ν3) ∈ k3,

where µ1, µ2, µ3, ν1, ν2, ν3 are the unique scalars such that

[xp, xq] = µ1{xr, xs}, ν1{xp, xq} = [xr, xs],

[xp, xr] = µ2{xr, xs}, ν2{xp, xr} = [xs, xq],

[xp, xs] = µ3{xr, xs}, ν3{xp, xs} = [xq, xr],
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in A. It is easy to see that

(2.2)

{
⟨0, 1, 2, 3⟩A=⟨1, 0, 3, 2⟩A=⟨2, 3, 0, 1⟩A=⟨3, 2, 1, 0⟩A=(α1, α2, α3) and

⟨0, 1, 3, 2⟩A=⟨1, 2, 3, 0⟩A=⟨2, 1, 0, 3⟩A=⟨3, 1, 2, 0⟩A=(−α1,−α3,−α2).

If ⟨p, q, r, s⟩A = (λ1, λ2, λ3), then ⟨p, r, s, q⟩A = (λ2, λ3, λ1). Using this and
the equalities in (2.2), it is easy to compute ⟨p, q, r, s⟩A for all permutations
(p, q, r, s) of (0, 1, 2, 3).

Let’s write A = A(α, β, γ) and B = A(α′, β′, γ′). To distinguish the pre-
sentation of A from that for B we will write x0, x1, x2, x3 for the generators
of A, as in (1.3), and write x′0, x

′
1, x

′
2, x

′
3 for the generators of B. Thus, if

(β1, β2, β3) = (α′, β′, γ′), then [x′0, x
′
i] = βi{x′j , x′k} and {x′0, x′i} = [x′j , x

′
k] for

each cyclic permutation (i, j, k) of (1, 2, 3).
Suppose Φ : A→ B is an isomorphism of graded k-algebras. The restriction

of Φ to A1 is a vector space isomorphism A1 → B1. It induces an isomor-
phism φ : P(B∗

1) → P(A∗
1). Let’s denote the points (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0), (0, 0, 0, 1) ∈ P(B∗
1) by e′0, e

′
1, e

′
2, e

′
3, respectively. Since Φ in-

duces an isomorphism A/([A,A]) → B/([B,B]), φ restricts to an isomor-
phism Proj(B/([B,B])) → Proj(A/([A,A])). Therefore φ({e′0, e′1, e′2, e′3}) =
{e0, e1, e2, e3}. Since each xm vanishes at exactly 3 points in {e0, e1, e2, e3},
Φ(xm) vanishes at exactly 3 points in {e′0, e′1, e′2, e′3}. It follows that there are
non-zero scalars λ0, λ1, λ2, λ3 and a permutation (p, q, r, s) of (0, 1, 2, 3) such
that Φ(x0) = λ0x

′
p, Φ(x1) = λ1x

′
q, Φ(x2) = λ2x

′
r, and Φ(x3) = λ3x

′
s.

Since {x0, xi} = [xj , xk] for every cyclic permutation (i, j, k) of (1, 2, 3),

λ0λ1{x′p, x′q} = λ2λ3[x
′
r, x

′
s],

λ0λ2{x′p, x′r} = λ3λ1[x
′
s, x

′
q],

λ0λ3{x′p, x′s} = λ1λ2[x
′
q, x

′
r].

Since [x0, xi] = αi{xj , xk} for every cyclic permutation (i, j, k) of (1, 2, 3),

λ0λ1[x
′
p, x

′
q] = α1λ2λ3{x′r, x′s},

λ0λ2[x
′
p, x

′
r] = α2λ3λ1{x′s, x′q},

λ0λ3[x
′
p, x

′
s] = α3λ1λ2{x′q, x′r}.

It follows that

[x′p, x
′
q] = α1λ

−1
0 λ−1

1 λ2λ3{x′r, x′s}, [x′r, x
′
s] = λ0λ1λ

−1
2 λ−1

3 {x′p, x′q},
[x′p, x

′
r] = α2λ

−1
0 λ−1

2 λ3λ1{x′s, x′q}, [x′s, x
′
q] = λ0λ2λ

−1
3 λ−1

1 {x′p, x′r},
[x′p, x

′
s] = α3λ

−1
0 λ−1

3 λ1λ2{x′q, x′r}, [x′q, x
′
r] = λ0λ3λ

−1
1 λ−1

2 {x′p, x′s}.

Therefore ⟨p, q, r, s⟩B = (α, β, γ) = ⟨0, 1, 2, 3⟩A. It now follows from (2.2) and
the sentence after it that ⟨0, 1, 2, 3⟩B is a cyclic permutation of either (α, β, γ)
or (−α,−β,−γ); since ⟨0, 1, 2, 3⟩B = (α′, β′, γ′), the proof is complete. □



SKLYANIN-TYPE RELATIONS 755

3. The zero locus of the relations for A(α, β, γ)

The material in 3.1 applies to all graded algebras defined by 4 generators
and 6 quadratic relations, i.e., to all algebras A of the form TV/(R), where V
and R are as in the next paragraph.

3.1. Quadratic algebras on 4 generators with 6 relations. Let V be a
4-dimensional vector space over k, R a 6-dimensional subspace of V ⊗2. Let
P = P(V ∗) ∼= P3. Let Γ ⊆ P × P be the scheme-theoretic zero locus of R
(viewed as forms of bi-degree (1, 1)). For example, if A is the polynomial ring,
then R consists of the skew-symmetric tensors and Γ is the diagonal.

Since dimk(R) = 6 = dim(P3 × P3), Γ ̸= ∅.

Proposition 3.1. Suppose dim(Γ) = 0. Then

(1) Γ consists of 20 points counted with multiplicity, and
(2) the subspace of V ⊗ V that vanishes on Γ is R [17, Thm. 4.1].

Proof. (1) The Chow ring of P3 is isomorphic to Z[t]/(t4) with t the class of
a hyperplane. The Chow ring of P3 × P3 is isomorphic to Z[s, t]/(s4, t4) and
the class of the zero locus of a non-zero element in V ⊗ V is equal to s+ t. If
dim(Γ) = 0, then the class of Γ is (s+t)6 since dim(R) = 6. But (s+t)6 = 20s3t3

so the cardinality of Γ is 20 when its points are counted with multiplicity.
(2) This is [17, Thm. 4.1]. □

3.2. We now explain our strategy for computing Γ for A(α, β, γ).
Let x denote the row vector (x0, x1, x2, x3) over k⟨x0, x1, x2, x3⟩ and let xT

denote its transpose.
The relations defining A(α, β, γ) can be written as a single matrix equation,

MxT = 0, over k⟨x0, x1, x2, x3⟩, where

(3.1) M :=


−x1 x0 −αx3 −αx2
−x2 −βx3 x0 −βx1
−x3 −γx2 −γx1 x0
−x3 −x2 x1 −x0
−x1 −x0 −x3 x2
−x2 x3 −x0 −x1

 .

The relations can also be written as xM ′ = 0, where

(3.2) M ′ :=


−x1 −x2 −x3 −x3 −x1 −x2
x0 βx3 γx2 x2 −x0 −x3
αx3 x0 γx1 −x1 x3 −x0
αx2 βx1 x0 −x0 −x2 x1

 .

Consider the entries in M (resp., x) as linear forms on the left-hand (resp.,
right-hand) factor of P3×P3 = P(V ∗)×P(V ∗). Then Γ is the scheme-theoretic
zero locus of the six entries in MxT when those entries are viewed as bi-
homogeneous elements in k[x0, x1, x2, x3]⊗ k[x0, x1, x2, x3].
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Let pr1 : Γ → P3 and pr2 : Γ → P3 be the projections pr1(p, p
′) = p and

pr2(p, p
′) = p′.

If p ∈ P3, then p ∈ pr1(Γ) if and only if there is a point p′ ∈ P3 such
that M(p)xT(p′) = 0; i.e., if and only if rank(M(p)) < 4. Thus, pr1(Γ) is the
scheme-theoretic zero locus of the 4 × 4 minors of M . Similarly, pr2(Γ) is the
scheme-theoretic zero locus of the 4× 4 minors of M ′.

Lemma 3.2. If λ, µ, ν are non-zero scalars, then the intersection of the three
quadrics

x0x1 − λ2x2x3 = 0, x0x2 − µ2x1x3 = 0, x0x3 − ν2x1x2 = 0,

consists of the eight points

(0, 1, 0, 0), (0, 0, 1, 0), (λµν, λ, µ, ν), (λµν,−λ,−µ, ν),
(1, 0, 0, 0), (0, 0, 0, 1), (λµν,−λ, µ,−ν), (λµν, λ,−µ,−ν).

Proof. The line x0 − λµx3 = x1 − λµ−1x2 = 0 lies on the quadric x0x1 −
λ2x2x3 = 0 because

x0x1 − λ2x2x3 = (x0 − λµx3)x1 + (x1 − λµ−1x2)λµx3

and on the quadric x0x2 − µ2x1x3 = 0 because

x0x2 − µ2x1x3 = (x0 − λµx3)x2 − (x1 − λµ−1x2)µ
2x3.

Continuing in this vein, the lines x0 = x3 = 0, x1 = x2 = 0, x0 − λµx3 =
x1−λµ−1x2 = 0, and x0+λµx3 = x1+λµ

−1x2 = 0, lie on the quadrics x0x1−
λ2x2x3 = 0 and x0x2 − µ2x1x3 = 0. By Bézout’s theorem, the intersection of
these two quadrics is a curve of degree 4 in P3 so is the union of these four
lines.

The quadric x0x3 − ν2x1x2 = 0 meets the line x0 = x3 = 0 at (0, 1, 0, 0)
and (0, 0, 1, 0); the line x1 = x2 = 0 at (1, 0, 0, 0) and (0, 0, 0, 1); the line
x0 − λµx3 = x1 − λµ−1x2 = 0 at (λµν, λ, µ, ν) and (λµν,−λ,−µ, ν); and the
line x0 + λµx3 = x1 + λµ−1x2 = 0 at (λµν,−λ, µ,−ν) and (λµν, λ,−µ,−ν).
The proof is complete. □

Proposition 3.3. The scheme Γ associated to the algebra TV/(R) = A(α, β, γ)
is finite if and only if αβγ ̸= 0 and α+ β + γ + αβγ ̸= 0.

Proof. Before starting the proof we introduce some notation.
We label the following four polynomials in the symmetric algebra SV :

q := x20 + x21 + x22 + x23,

q1 := x20 − βγx21 − γx22 + βx23,

q2 := x20 + γx21 − αγx22 − αx23,
q3 := x20 − βx21 + αx22 − αβx23.
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We write hij for the 4 × 4 minor of M obtained by deleting rows i and j.
Up to non-zero scalar multiples,

h23 = (x0x1 − αx2x3)q, h46 = (x0x1 + αx2x3)q1, h24 = (x0x1 − x2x3)q2,
h36 = (x0x1 + x2x3)q3, h13 = (x0x2 − βx1x3)q, h14 = (x0x2 + x1x3)q1,

h45 = (x0x2 + βx1x3)q2, h35 = (x0x2 − x1x3)q3, h12 = (x0x3 − γx1x2)q,
h16 = (x0x3 − x1x2)q1, h25 = (x0x3 + x1x2)q2, h56 = (x0x3 + γx1x2)q3,

h34 = (αβx23 − x20)(x21 + x22) + (αx22 − βx21)(x20 + x23)

= (αβx23 − x20)q + (x20 + x23)q3,

h26 = (αγx22 − x20)(x21 + x23) + (γx21 − αx23)(x20 + x22)

= (αγx22 − x20)q + (x20 + x22)q2,

h15 = (βγx21 − x20)(x22 + x23) + (βx23 − γx22)(x20 + x21)

= (βγx21 − x20)q + (x20 + x21)q1.

These are the “same” expressions as those in the proof of [21, Prop. 2.4].2

We write gij for the 4× 4 minor of M ′ obtained by deleting columns i and
j.

If p = (λ0, λ1, λ2, λ3) ∈ P3 we write ⊖p for the point (−λ0, λ1, λ2, λ3) and
M ′(⊖p) for the matrixM ′ evaluated at ⊖p. The matricesM ′(⊖p) and −M(p)T

are almost the same: the only difference is that the top row of M ′(⊖p) is the
negative of the top row of −M(p)T. This observation makes it easy to compute
the 4×4 minors of M ′ from the 4×4 minors of M . Doing that, up to non-zero
scalar multiples we obtain

g23 = (x0x1 + αx2x3)q, g46 = (x0x1 − αx2x3)q1, g24 = (x0x1 + x2x3)q2,

g36 = (x0x1 − x2x3)q3, g13 = (x0x2 + βx1x3)q, g14 = (x0x2 − x1x3)q1,
g45 = (x0x2 − βx1x3)q2, g35 = (x0x2 + x1x3)q3, g12 = (x0x3 + γx1x2)q,

g16 = (x0x3 + x1x2)q1, g25 = (x0x3 − x1x2)q2, g56 = (x0x3 − γx1x2)q3,
g34 = (αβx23 − x20)(x21 + x22) + (αx22 − βx21)(x20 + x23)

= (αβx23 − x20)q + (x20 + x23)q3,

g26 = (αγx22 − x20)(x21 + x23) + (γx21 − αx23)(x20 + x22)

= (αγx22 − x20)q + (x20 + x22)q2,

g15 = (βγx21 − x20)(x22 + x23) + (βx23 − γx22)(x20 + x21)

= (βγx21 − x20)q + (x20 + x21)q1.

In particular, up to non-zero scalar multiples,

gij(x0, x1, x2, x3) = hij(−x0, x1, x2, x3)

2The phrase “making frequent use of (0.2.1)” in the second sentence in the proof of
[21, Prop. 2.4] should be deleted in order to make that sentence true.
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for all i and j. Hence pr2(Γ) = ⊖pr1(Γ).
It follows that pr1(Γ) is finite if and only if pr2(Γ) is finite if and only if Γ

is finite.
(⇐) Suppose αβγ ̸= 0 and α+ β + γ + αβγ ̸= 0.
Let C be an irreducible component of pr1(Γ). Since h12, h13, and h23, vanish

on C, either q vanishes on C or C is in the zero locus of the other factors of h12,
h13, and h23; i.e., in the common zero locus of x0x1 − αx2x3, x0x2 − βx1x3,
and x0x3−γx1x2; but that common zero locus is finite by Lemma 3.2 so either
C is finite or q vanishes on C. Likewise, if qj ∈ {q1, q2, q3}, either C is finite
or qj vanishes on C. Thus, either C is finite or all four of q, q1, q2, and q3,
vanish on C. However, the set {q, q1, q2, q3} is linearly independent because the
determinant

det


1 1 1 1
1 −βγ −γ β
1 γ −αγ −α
1 −β α −αβ

 = −(α+ β + γ + αβγ)2

is non-zero so the common zero-locus of q, q1, q2, and q3, is empty. We conclude
that C is finite. It follows that pr1(Γ), and hence Γ, is finite.

(⇒) Suppose Γ is finite.
If α + β + γ + αβγ = 0, then span{q, q1} = span{q, q2} = span{q, q3}. It

follows that all hij vanish on {q = q1 = 0} whence {q = q1 = 0} ⊆ pr1(Γ). But
this is ridiculous because {q = q1 = 0} is a curve, hence infinite, so we conclude
that α+ β + γ + αβγ ̸= 0.

If α = 0, then all hij vanish on the line x0 = x1 = 0; i.e., {x0 = x1 = 0} ⊆
pr1(Γ); this is not the case because Γ is finite so we conclude that α ̸= 0. If
β = 0, then {x0 = x2 = 0} ⊆ pr1(Γ); this is not the case so we conclude that
β ̸= 0. If γ = 0, then {x0 = x3 = 0} ⊆ pr1(Γ); this is not the case so we
conclude that γ ̸= 0. Thus, αβγ ̸= 0. □

3.3. Suppose αβγ ̸= 0. Let P ⊆ P3 denote the set 20 of points in the follow-
ing table.

Table 3. The points in P.

P∞ P0 P1 P2 P3

(1, 0, 0, 0) (abc, a, b, c) (−a, ia, i, 1) (−b, 1, ib, i) (−c, i, 1, ic)
(0, 1, 0, 0) (abc, a,−b,−c) (a,−ia, i, 1) (b,−1, ib, i) (c,−i, 1, ic) γ1
(0, 0, 1, 0) (abc,−a, b,−c) (a, ia,−i, 1) (b, 1,−ib, i) (c, i,−1, ic) γ2
(0, 0, 0, 1) (abc,−a,−b, c) (a, ia, i,−1) (b, 1, ib,−i) (c, i, 1,−ic) γ3
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Let ⊖ : P(V ∗) → P(V ∗) and θ : P → ⊖P be the maps ⊖(ξ0, ξ1, ξ2, ξ3) =
(−ξ0, ξ1, ξ2, ξ3) and

θ(p) :=


p if p ∈ P∞,

⊖p if p ∈ P0,

⊖γi(p) if p ∈ Pi, i = 1, 2, 3,

where γi is defined in Table 2. As a permutation of P ∪ ⊖P, θ has order 2.

Proposition 3.4. Suppose the subscheme Γ ⊆ P3 × P3 determined by the
relations for A(α, β, γ) is finite. Then Γ is the graph of the bijection θ : P →
⊖P and consists of 20 distinct points.

Proof. Since Γ is finite, both αβγ and α + β + γ + αβγ are non-zero. Since
αβγ ̸= 0, each column of Table 3 consists of four distinct points. It is easy to
see that

P∞ ∩ (P0 ∪ P1 ∪ P2 ∪ P3) = P1 ∩ P2 = P2 ∩ P3 = P3 ∩ P1 = ∅.
If (a, ξ1, ξ2, ξ3) ∈ P0, then ξ1 = aξ2ξ3; if (a, ξ1, ξ2, ξ3) ∈ P1, then ξ1 = −aξ2ξ3;
hence P0 ∩ P1 = ∅. Similarly, if (b, ξ1, ξ2, ξ3) ∈ P0, then ξ2 = bξ1ξ3 whereas
if (b, ξ1, ξ2, ξ3) ∈ P2, then ξ2 = −bξ1ξ3 so P0 ∩ P2 = ∅. The same sort of
argument shows that P0 ∩ P3 = ∅. Thus, P is the disjoint union of five sets
each of which consists of four distinct points. Hence P consists of 20 distinct
points.

Let Γθ denote the graph of θ : P→ ⊖P.
To complete the proof we must show that the vanishing locus in P × P of

the polynomials (bilinear forms)

(3.3)



x0 ⊗ x1 − x1 ⊗ x0 − α(x2 ⊗ x3 + x3 ⊗ x2),
x0 ⊗ x1 + x1 ⊗ x0 − x2 ⊗ x3 + x3 ⊗ x2;
x0 ⊗ x2 − x2 ⊗ x0 − β(x3 ⊗ x1 + x1 ⊗ x3),
x0 ⊗ x2 + x2 ⊗ x0 − x3 ⊗ x1 + x1 ⊗ x3;
x0 ⊗ x3 − x3 ⊗ x0 − γ(x1 ⊗ x2 + x2 ⊗ x1),
x0 ⊗ x3 + x3 ⊗ x0 − x1 ⊗ x2 + x2 ⊗ x1;

is exactly Γθ.
Clearly, if p ∈ P∞, then all six polynomials in (3.3) vanish at (p, p) =

(p, θ(p)).
Suppose p ∈ P0. Let (i, j, k) be a cyclic permutation of (1, 2, 3). Since

(p, θ(p)) = (p,⊖p), x0 ⊗ xi + xi ⊗ x0 and xj ⊗ xk − xk ⊗ xj vanish at (p, θ(p));
the three polynomials in the second column of (3.3) therefore vanish at (p, θ(p)).
On the other hand, x0⊗xi−xi⊗x0 − αi(xj⊗xk+xk⊗xj) vanishes at (p, θ(p))
if and only if 2x0 ⊗ xi − 2αixj ⊗ xk does. This vanishes at (p,⊖p) because
2x0xi − 2αixjxk vanishes at p.

Let (i, j, k) be a cyclic permutation of (1, 2, 3). Suppose p = (ξ0, ξ1, ξ2, ξ3) ∈
Pi. Then θ(p) = (ξ′0, ξ

′
1, ξ

′
2, ξ

′
3), where ξ

′
i = −ξi and ξ′ℓ = ξℓ if ℓ ∈ {0, 1, 2, 3} −
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{i}. It follows that(
x0 ⊗ xi − xi ⊗ x0 − αi(xj ⊗ xk + xk ⊗ xj)

)∣∣
(p,θ(p))

= −2ξ0ξi − 2αiξjξk,(
x0 ⊗ xj + xj ⊗ x0 − xk ⊗ xi + xi ⊗ xk

)∣∣
(p,θ(p))

= 2ξ0ξj + 2ξkξi,(
x0 ⊗ xk + xk ⊗ x0 − xi ⊗ xj + xj ⊗ xi

)∣∣
(p,θ(p))

= 2ξ0ξk − 2ξiξj .

A case-by-case inspection shows that these three expressions are zero; thus,
three of the polynomials in (3.3) vanish at (p, θ(p)). The other three polyno-
mials in (3.3) also vanish at (p, θ(p)) because the polynomials

x0 ⊗ xi + xi ⊗ x0, x0 ⊗ xj − xj ⊗ x0, x0 ⊗ xk − xk ⊗ x0,
xi ⊗ xj + xj ⊗ xi, xk ⊗ xi + xi ⊗ xk, xj ⊗ xk − xk ⊗ xj ,

vanish at (p, θ(p)).
We have shown that the polynomials in (3.3) vanish on Γθ. This completes

the proof that Γθ ⊆ Γ. In particular, P ⊆ pr1(Γ). To complete the proof of
the proposition we must show the polynomials in (3.3) do not vanish outside
Γθ or, equivalently, that pr1(Γ) = P.

With this goal in mind let p ∈ pr1(Γ). We observed in the proof of Propo-
sition 3.3, that

{q = q1 = q2 = q3 = 0} = ∅.
If q does not vanish at p, then Lemma 3.2 implies that p ∈ P∞∪P0. Likewise,
if qj ∈ {q1, q2, q3} and does not vanish at p, then Lemma 3.2 tells us that
p ∈ P∞ ∪Pj . We conclude that p ∈ P. □

Corollary 3.5. If αβγ ̸= 0 and α + β + γ + αβγ ̸= 0, then A(α, β, γ) is
isomorphic to TV/(R), where R ⊆ V ⊗2 is the subspace consisting of those
(1, 1) forms that vanish on the graph of the bijection θ : P→ ⊖P.

Any deeper meaning of the data (P, θ) eludes us.

3.4. Remarks. In 3.4 we assume that αβγ ̸= 0 but do not make any assump-
tion on α+ β + γ + αβγ.

3.4.1. Let ψ1, ψ2, ψ3 ∈ GL(V ) be the maps defined in 2.1.5. Let γ1, γ2, γ3 ∈
GL(V ) be the maps defined in 2.2.

Let x∗0, x
∗
1, x

∗
2, x

∗
3 be the dual basis to x0, x1, x2, x3. The contragredient ac-

tion of the maps ψj acting on V ∗ is given by Table 4. The subgroup of GL(V ∗)
generated by ψ1, ψ2, ψ3 is isomorphic to H4. The center of H4 acts trivially on
P(V ∗) so we obtain an action of Z4 × Z4 on P(V ∗).

It is easy to see that ψj(P) = P for all j. We note that

ψj(abc, a, b, c) =


(a,−ia, i, 1) if j = 1,

(b, 1,−ib, i) if j = 2,

(c, i, 1,−ic) if j = 3.
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It follows rather easily that P0∪P1∪P2∪P3 is a single orbit under the action
of H4 and therefore a single Z4 × Z4-orbit. The subgroup {id, γ1, γ2, γ3} of
Z4 × Z4 is an essential subgroup and, as is easy to see, none of γ1, γ2, γ3 fixes
any point in P0 ∪P1 ∪P2 ∪P3 so the homomorphism

Z4 × Z4 −→ {permutations of P0 ∪P1 ∪P2 ∪P3}
is injective. It follows thatP0∪P1∪P2∪P3 consists of 16 distinct points. Hence
P consists of 20 distinct points (even without the hypothesis α+β+γ+αβγ ̸=
0).

Table 4. Contragredient action of H4 on V ∗.

x∗0 x∗1 x∗2 x∗3

ψ1 ix∗1 (bc)−1x∗0 −c−1x∗3 ib−1x∗2

ψ2 ix∗2 ic−1x∗3 (ac)−1x∗0 −a−1x∗1

ψ3 ix∗3 −ib−1x∗2 ia−1x∗1 (ab)−1x∗0

3.4.2. The points in P∞ are fixed by the action of Z2×Z2 given by Table 2.

3.4.3. If i ̸=∞ and p is the topmost point in the column Pi, then the other
points in that column are γ1(p), γ2(p), and γ3(p), in that order from top to
bottom. Thus, when j ̸=∞, Pj is a single Z2 × Z2-orbit.

3.5. The scheme Γ for the 4-dimensional Sklyanin algebras. We review
the Sklyanin algebra case (see [15, 20, 21]). Let A = A(α, β, γ) be a non-
degenerate Sklyanin algebra. Then Γ, which we defined in §3.1, is the graph
of an automorphism of E ∪ {e0, e1, e2, e3}, where E ⊆ P3 is the quartic elliptic
curve cut out by (any two of, or all) the equations:

(3.4)


x20 + x21 + x22 + x23 = 0,

x20 − βγx21 − γx22 + βx23 = 0,

x20 + γx21 − αγx22 − αx23 = 0,

x20 − βx21 + αx22 − αβx23 = 0,

and ei is the vanishing locus of {x0, x1, x2, x3} − {xi}. The points ei are the
vertices of the four singular quadrics that contain E. The automorphism fixes
each ei and its restriction to E is a translation automorphism. Furthermore,
R = {f ∈ V ⊗ V | f |Γ = 0}. Thus, R and Γ determine each other.

We fix a point o ∈ E ∩ {x0 = 0} and impose a group law on E such that o
is the identity and four points on E are collinear if and only if their sum is o.
The 2-torsion subgroup E[2] is E ∩ {x0 = 0}. We write ⊕ for the group law
and ⊖ for subtraction, i.e., p⊕ q = r if and only if p = r ⊖ q.

If p = (ξ0, ξ1, ξ2, ξ3) ∈ E, then ⊖p = (−ξ0, ξ1, ξ2, ξ3).



762 A. CHIRVASITU AND S. P. SMITH

See [5, §7] for a longer explanation that uses the same notation as here.

Proposition 3.6. If A is a non-degenerate 4-dimensional Sklyanin algebra,
then

(1) P0 ∪ P1 ∪ P2 ∪ P3 ⊆ E, where E is the elliptic curve given by the
equations in (3.4);

(2) P0 = τ ′ ⊕ E[2], where τ ′ = (abc, a, b, c);
(3) Pi = εi⊕ τ ′⊕E[2] and E[2] = {o, 2ε1, 2ε2, 2ε3} for suitable ε1, ε2, ε3 ∈

E[4].

4. Point schemes, graphs and flat families

Consider the family of algebras A(α1, α2, α3) as the parameters αi vary.
This section is devoted to studying the behavior of the scheme Γ introduced in
3.1 as the fiber of a family over the parameter space consisting of the points
(α1, α2, α3), and, more generally, over the family of six-dimensional relation
spaces for four-generator algebras.

4.1. Throughout Section 4, V denotes a fixed four-dimensional space of gen-
erators for our quadratic algebras with a fixed basis consisting of the generators
xi, 0 ≤ i ≤ 3, G = G(6, V ⊗2) is the Grassmannian of 6-planes in V ⊗2, and we
regard the points of G as spaces of relations for four-generator-six-relator con-
nected graded algebras, so that G will be the parameter space for the algebras
in question. We encode a relation space R ∈ G as either a 6× 4 matrix M or
a 4× 6 matrix M ′ with entries in V analogous to (3.1) and (3.2), respectively;
so R is spanned by the entries in either the equation MxT = 0, or xM ′ = 0,
where x = (xi).

In keeping with the notation in §3.1, we denote by Γ the family π : Γ → G
whose R-fiber ΓR for R ∈ G is by definition the subscheme of P(V ∗) × P(V ∗)
consisting of the pairs of points (p, p′) as in the discussion from 3.1, whose
defining property is M(p)xT(p′) = 0.

We define

X := pr1(Γ) and X′ := pr2(Γ),

and

U := {R ∈ G | dim(XR) = 0} and U ′ := {R ∈ G | dim(X′
R) = 0}.

Finally, given a family π : S → T and an open subset W ⊆ T, we denote the
restricted family π−1(W ) by SW , slightly abusing notation.

When the algebra AR corresponding to R is Artin-Schelter regular and has
some other good properties that we will not specify here, the scheme XR is
(one incarnation of) the point scheme of AR (i.e., the scheme parametrizing the
isomorphism classes of point modules in QGr(AR)). In many cases of interest
XR equals X′

R, and ΓR is the graph of an automorphism of this scheme (e.g.,
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for non-degenerate 4-dimensional Sklyanin algebras [21], for 3-dimensional AS-
regular algebras [1], et al.). Moreover, we saw above in Proposition 3.4 that
even when XR ̸= X′

R, the scheme ΓR is often the graph of an isomorphism.
For these reasons, we regard Γ and its projections X and X′ as stand-ins for

the point scheme even when we lack the requisite regularity properties for this
to be literally the case.

We first prove a statement analogous to [6, Theorem 2.6]. That result says,
essentially, that the line schemes of connected graded algebras with four gener-
ators and six quadratic relations form a flat family provided they have minimal
dimension. We prove here that the family Γ→ G is similarly well behaved.

First, we have the following analogue of [6, Proposition 2.1].

Proposition 4.1. The subsets U and U ′ are dense open subsets of G.

Proof. This is entirely analogous to the proof of [6, Proposition 2.1]. We focus
on the case of U , to fix ideas.

First, Van den Bergh’s result [24] that, generically, four-generator-six-relator
algebras have twenty point modules ensures that U contains a dense open subset
of G. Let Xi be the irreducible components of X, and πi : (Xi)red → π(Xi)red
the restriction and corestriction of π to (Xi)red.

Each πi is projective and hence closed. By [12, Exercise II.3.22(d)] applied
to each πi individually, the complement of U , being the image of the closed
subset

{x ∈ X | x belongs to some component of Xπ(x) of dimension ≥ 1}
of X, is closed in G. □

Corollary 4.2. The locusW ⊂ G over which the family Γ has zero-dimensional
fibers is open and dense.

Proof. The fiber ΓR is zero-dimensional if and only if its two projections XR

and X′
R are, so W is simply the intersection U ∩ U ′. The conclusion follows

from Proposition 4.1. □

We now turn, as hinted above, to proving certain regularity properties for the
families X, X′, and Γ over the good open subsets of G identified in Proposition
4.1 and Corollary 4.2.

Lemma 4.3. The schemes XU and X′
U ′ are Cohen-Macaulay.

Proof. Once more, we focus on the case of XU without loss of generality.
Locally on U , the equations that define XU as a U -subscheme of the relative

projective space P(V ∗)U = P(V ∗)×U are given by the 4× 4 minors of a 6× 4
matrix. Moreover, over U , XU has codimension 3 in P(V ∗)U .

In general, the quotient by the ideal I generated by the r × r minors of a
p×q matrix in a Cohen-Macaulay ring is again Cohen-Macaulay, provided I has
maximal codimension (p−r+1)(q−r+1) (see e.g. the discussion in [10, §18.5]
on determinantal rings and [2] for a proof). In our case p = 6, q = 4, and r = 4
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so the critical codimension is (6 − 4 + 1)(4 − 4 + 1) = 3. This concludes the
proof. □

Theorem 4.4. The families XU → U , X′
U ′ → U ′, and ΓW →W are flat.

Proof. We divide the argument into two parts.
(1) X and X′: Symmetry allows us to once again focus on X. Given the

Cohen-Macaulay property for XU , the proof of the theorem mimics that of
[6, Theorem 2.6] verbatim.

Let x ∈ XU be a point, and set B = Oπ(x),U and A = Ox,XU
. In order to

show that A is flat as a B-module, denote by p the maximal ideal of B. Since
the fiber (XU )π(x) is of minimal dimension 0, we have the equality

dim(A) = dim(B) + dim(A/Ap).

This implies the flatness of A over B via [10, Theorem 18.16 (b)], given that A
is Cohen-Macaulay by Lemma 4.3 and B is regular.

(2) Γ: The result for ΓW → W follows from part (1) and the observation
that over W the projection pr1 : Γ→ X is an isomorphism. □

Finally, as an application of the flatness results just proven, we provide
an alternate argument for the fact that the 20 points in Table 3 exhaust the
“point scheme” of A(α1, α2, α3) under certain non-degeneracy conditions on
the parameters αi. We begin with:

Corollary 4.5. For every R ∈ U , the scheme XR consists of 20 points counted
with multiplicity. Similarly for X′

U ′ and ΓW .

Proof. We can embed the family X → G into the relative projective space
P(V ∗)G = P(V ∗)×G in the usual fashion.

The flatness of Theorem 4.4 ensures that all fibers XR have the same degree
in P(V ∗) so long as R ∈ U , i.e., when dim(XR) = 0. But we know there are
six-dimensional relation spaces R, where the degree is 20 (e.g. the algebras in
[3, 5, 16,24,26]).

The case of X′
U ′ is analogous, while that of ΓW follows as in the proof of

Theorem 4.4, using the fact that pr1 : Γ→ X is an isomorphism over W . □

Corollary 4.5 allows us to give a proof of half of Proposition 3.3 that involves
less calculation.

Proposition 4.6. If α + β + γ + αβγ ̸= 0 and αβγ ̸= 0 and A(α, β, γ) =
TV/(R), then XR consists of the 20 points in Table 3.

Proof. If we show that every closed point of XR is one of the points in Table
3, then dim(XR) = 0 so, by Corollary 4.5 above, XR will consist of 20 points
counted with multiplicity.

Let p be a closed point in XR. Consider the four quadratic polynomials q,
q1, q2, and q3 that are defined in the proof of Proposition 3.3; they are∑

x2i , x20−βγx21−γx22+βx23, x20+γx
2
1−αγx22−αx23, x20−βx21+αx22−αβx23.
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Since

det


1 1 1 1
1 −βγ −γ β
1 γ −αγ −α
1 −β α −αβ

 = −(α+ β + γ + αβγ)2

is non-zero by hypothesis, at least one of q, q1, q2, and q3 is non-zero at p.
Because αβγ ̸= 0 we may apply Proposition 2.1. The action of H4 on V that
was defined in Proposition 2.1(2) extends to an action of H4 as automorphisms
of the polynomial ring k[x0, x1, x2, x3]. In particular, H4 permutes the polyno-
mials q, q1, q2, and q3, up to scalar multiples, so we may as well assume that
q =

∑
x2i does not vanish at p. But the minors h12, h13, and h23 (defined in

Proposition 3.3), all of which are multiples of q, vanish at p so p must be one
of the finitely many points in

x0x3 − γx1x2 = x0x2 − βx1x3 = x0x1 − αx2x3 = 0.

But these points belong to P so p ∈ P. However, it is easy to see that every
hij vanishes on P, so XR = P. □

5. The algebras R(a, b, c, d) of Cho, Hong, and Lau

In this section a, b, c do not denote square roots of α, β, γ.

5.1. The definition. Let (a, b, c, d) ∈ k4 − {0} and define R(a, b, c, d), or
simply R, to be the free algebra TV = k⟨x1, x2, x3, x4⟩ modulo the relations:

(R1) ax4x3 + bx3x4 + cx3x2 + dx4x1 = 0,

(R2) ax3x2 + bx2x3 + cx4x3 + dx1x2 = 0,

(R3) ax2x1 + bx1x2 + cx1x4 + dx2x3 = 0,

(R4) ax1x4 + bx4x1 + cx2x1 + dx3x4 = 0,

(R5) ax3x1 − ax1x3 + cx24 − cx22 = 0,

(R6) bx4x2 − bx2x4 + dx23 − dx21 = 0.

For example, R(1,−1, 0, 0) is the commutative polynomial ring on 4 generators.
Since R(a, b, c, d) depends only on (a, b, c, d) as a point in P3, the family

of algebras R(a, b, c, d) is parametrized by P3. Proposition 5.2 concerns those
algebras R(a, b, c, d) parametrized by the points on the quadric ac + bd = 0.
That quadric is isomorphic to P1 × P1.

The lines

ℓ1 := {a+ id = c+ ib = 0} and ℓ2 := {a− id = c− ib = 0}

on that quadric and their open subsets

ℓ◦1 := ℓ1− {(0, i, 1, 0), (1, 0, 0, i), (1,−i,−1, i), (1, i, 1, i), (1,−1, i, i),
(1, 1,−i, i)}
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and

ℓ◦2 := ℓ2− {(0,−i, 1, 0), (1, 0, 0,−i), (1, i,−1,−i), (1,−i, 1,−i),
(1,−1,−i,−i), (1, 1, i,−i)}

play a distinguished role.

5.2. At [8, Conj. 8.11], Cho, Hong, and Lau conjecture that when ac+ bd =
0, R is isomorphic to a 4-dimensional Sklyanin algebra, i.e., isomorphic to
A(α, β, γ) for some α, β, γ ∈ k such that α+ β + γ + αβγ = 0. Proposition 5.2
shows that R is isomorphic to a 4-dimensional Sklyanin algebra if and only if
(a, b, c, d) ∈ ℓ1∪ℓ2. Nevertheless, R is always isomorphic to A(α, β, γ) for some
α, β, γ.

Proposition 5.1. Let z0 = 1
2 (x2 +x4), z1 = 1

2 (x1 +x3), z2 = 1
2 (x1−x3), and

z3 = 1
2 (x2−x4). The algebra R(a, b, c, d) is equal to k⟨z0, z1, z2, z3⟩ modulo the

relations:

(a− b− c+ d)[z0, z1] = (−a− b+ c+ d){z2, z3},
(−a+ b+ c+ d)[z0, z2] = (a+ b− c+ d){z3, z1},
(a+ b+ c+ d){z0, z1} = (a− b+ c− d)[z2, z3],
(a+ b+ c− d){z0, z2} = (−a+ b− c− d)[z3, z1],

b[z0, z3] = d{z1, z2},
c{z0, z3} = a[z1, z2].

Proof. Since x1 = z1 + z2, x2 = z0 + z3, x3 = z1 − z2, and x4 = z0 − z3, the
relations (R1)–(R4) can be replaced by the four relations:

1
2 ((R1)+(R3)) : (a+ d)z0z1 + (b+ c)z1z0 + (a− d)z3z2 + (b− c)z2z3 = 0,

1
2 ((R1) - (R3)) : (d− a)z0z2 − (b+ c)z2z0 − (a+ d)z3z1 + (c− b)z1z3 = 0,

1
2 ((R4)+(R2)) : (b+ c)z0z1 + (a+ d)z1z0 + (d− a)z2z3 + (c− b)z3z2 = 0,

1
2 ((R4) - (R2)) : (a− d)z2z0 + (b+ c)z0z2 − (a+ d)z1z3 + (c− b)z3z1 = 0.

1
2 ((R1)+(R3)) : (a+ d)z01 + (b+ c)z10 + (a− d)z32 + (b− c)z23 = 0,

1
2 ((R1) - (R3)) : (d− a)z02 − (b+ c)z20 − (a+ d)z31 + (c− b)z13 = 0,

1
2 ((R4)+(R2)) : (b+ c)z01 + (a+ d)z10 + (d− a)z23 + (c− b)z32 = 0,

1
2 ((R4) - (R2)) : (a− d)z20 + (b+ c)z02 − (a+ d)z13 + (c− b)z31 = 0.

It follows that R is equal to k⟨z0, z1, z2, z3⟩ modulo the relations:

1
2 ((R1)+(R3)+(R2)+(R4)) : (a+b+c+d){z0, z1}+(a−b+c−d)[z3, z2]=0,

1
2 ((R1)+(R3) - (R2) - (R4)) : (a−b−c+d)[z0, z1]+(a+b−c−d){z3, z2}=0,

1
2 ((R1) - (R3) - (R2)+(R4)) : (−a+b+c+d)[z0, z2]+(−a−b+c−d){z1, z3}=0,
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1
2 ((R1) - (R3)+(R2) - (R4)) : (−a−b−c+d){z0, z2}+(a−b+c+d)[z1, z3]=0,

1
2 (R5) : a[z1, z2]− c{z0, z3} = 0,

1
2 (R6) : b[z0, z3]− d{z1, z2} = 0.

Rearranging these gives the presentation in the statement of the proposition.
□

Proposition 5.2. Let a, b, c, d ∈ k and define p := a+ b, q := a− b, r := c+d,
and s := c− d. Suppose that ac+ bd = 0 and

(5.1) abcd(p+ r)(p− r)(p+ s)(p− s)(q + r)(q − r)(q + s)(q − s) ̸= 0.

(1) R(a, b, c, d) ∼= A(α, β, γ), where

α =
r2 − p2

q2 − s2
, β =

p2 − s2

r2 − q2
, and γ =

cd

ab
.

(2) α+ β + γ + αβγ = 0 if and only if (a, b, c, d) ∈ ℓ1 ∪ ℓ2.
(3) If (a, b, c, d) ∈ ℓ1 ∪ ℓ2, then R(a, b, c, d) is isomorphic to a Sklyanin

algebra,
R(a, b, c, d) ∼= A(α, 1,−1),

where

α =

{
(b+ d+ ib− id)2(b+ d− ib+ id)−2 if a+ id = c+ ib = 0,

(b+ d− ib+ id)2(b+ d+ ib− id)−2 if a− id = c− ib = 0,

and is generated by homogeneous degree-one elements Y±,K,K
′ such

that

KY± = ∓iY±K, K ′Y± = ±iY±K ′, [Y+, Y−] = i(K ′2 −K2), and

[K,K ′] = iα(Y 2
+ − Y 2

−).

Proof. (1) Condition (5.1) ensures that the denominators in the expressions for
α, β, γ, are non-zero.

Let z0, z1, z2, z3 be as in Proposition 5.1. Condition (5.1) ensures that the
denominators in the following expressions are non-zero, so R is defined by the
following relations:

[z0, z1] =
r − p
q − s

{z2, z3}, {z0, z1} =
q + s

p+ r
[z2, z3],

[z0, z2] =
p− s
r − q

{z3, z1}, {z0, z2} =
q + r

p+ s
[z3, z1],

[z0, z3] =
d

b
{z1, z2}, {z0, z3} =

a

c
[z1, z2].

For brevity, let’s write these relations as

[z0, z1] = µ1 {z2, z3}, {z0, z1} = ν1 [z2, z3],

[z0, z2] = µ2 {z3, z1}, {z0, z2} = ν2 [z3, z1],

[z0, z3] = µ3 {z1, z2}, {z0, z3} = ν3 [z1, z2].



768 A. CHIRVASITU AND S. P. SMITH

Define v0 := z0, v1 :=
√
ν2ν3 z1, v2 :=

√
ν3ν1 z2, and v3 :=

√
ν1ν2 z3. Thus, R

is the free algebra k⟨v0, v1, v2, v3⟩ modulo the relations:

[v0, v1] = α {v2, v3}, {v0, v1} = [v2, v3],

[v0, v2] = β {v3, v1}, {v0, v2} = [v3, v1],

[v0, v3] = γ {v1, v2}, {v0, v3} = [v1, v2],

where

α = µ1ν
−1
1 =

r2 − p2

q2 − s2
, β = µ2ν

−1
2 =

p2 − s2

r2 − q2
, and γ = µ3ν

−1
3 =

cd

ab
.

(2) The expression (q2 − s2)(r2 − q2)ab
(
α+ β + γ + αβγ) is equal to

(r2 − p2)(r2 − q2)ab + (p2 − s2)(q2 − s2)ab + (q2 − s2)(r2 − q2)cd
+ (r2 − p2)(p2 − s2)cd

= ab
(
r4 + s4 + 2p2q2 − (p2 + q2)(r2 + s2)

)
− cd

(
p4 + q4 + 2r2s2 − (p2 + q2)(r2 + s2)

)
= ab

(
2p2q2 − 2r2s2 + (r2 + s2 − p2 − q2)(r2 + s2)

)
− cd

(
2r2s2 − 2p2q2 − (r2 + s2 − p2 − q2)(p2 + q2)

)
= 2(ab+ cd)(p2q2 − r2s2) + (r2 + s2 − p2 − q2)(abr2 + abs2 + cdp2 + cdq2).

But p2 + q2 = 2(a2 + b2) and r2 + s2 = 2(c2 + d2) so

abr2 + abs2 + cdp2 + cdq2 = 2(ac+ bd)(ad+ bc) = 0.

Therefore (q2 − s2)(r2 − q2)ab
(
α + β + γ + αβγ) = 2(ab + cd)(p2q2 − r2s2).

Hence α+β+ γ+αβγ = 0 if and only if (ab+ cd)(p2q2− r2s2) = 0; i.e., if and
only if (a2 − b2 − c2 + d2)(a2 − b2 + c2 − d2)(ab+ cd) = 0.

The locus ac+bd = (a2−b2−c2+d2)(a2−b2+c2−d2)(ab+cd) = 0 consists
of 8 lines: the locus ac + bd = a2 − b2 − c2 + d2 = 0 is the union of the four
lines

a−b = c+d = 0, a+b = c−d = 0, a+id = c+ib = 0, a−id = c−ib = 0;

the locus ac+ bd = a2 − b2 + c2 − d2 = 0 is the union of the four lines

a− b = c+ d = 0, a+ b = c− d = 0, a+ d = b− c = 0, a− d = b+ c = 0;

the locus ac+ bd = ab+ cd = 0 is the union of the four lines

a = d = 0, b = c = 0, a+ d = b− c = 0, a− d = b+ c = 0.

If (a, b, c, d) is on the line a−b = c+d = 0 or on the line a−d = b+c = 0, then
0 = a− b− c− d = q− r; hypothesis (5.1) excludes this possibility so (a, b, c, d)
is not on either of those lines. If (a, b, c, d) is on the line a = d = 0 or on the line
b = c = 0, then abcd = 0; hypothesis (5.1) excludes this possibility so (a, b, c, d)
is not on either of those lines. If (a, b, c, d) is on the line a + d = b − c = 0
or on the line a + b = c − d = 0, then 0 = a + b − c + d = p − s; hypothesis
(5.1) excludes this possibility so (a, b, c, d) is not on either of those lines. Thus,



SKLYANIN-TYPE RELATIONS 769

α + β + γ + αβγ = 0 if and only if (a, b, c, d) is on the union of the lines
a+ id = c+ ib = 0 and a− id = c− ib = 0; i.e., (a, b, c, d) ∈ ℓ1 ∪ ℓ2.

Not every (a, b, c, d) ∈ ℓ1∪ ℓ2 satisfies (5.1). The points (a, b, c, d) on the line
a+ id = c+ ib = 0 that do not satisfy (5.1) are

(5.2) (0, i, 1, 0), (1, 0, 0, i), (1,−i,−1, i), (1, i, 1, i), (1,−1, i, i), (1, 1,−i, i).

The points (a, b, c, d) on the line a − id = c − ib = 0 that do not satisfy (5.1)
are

(5.3)
(0,−i, 1, 0), (1, 0, 0,−i), (1, i,−1,−i),
(1,−i, 1,−i), (1,−1,−i,−i), (1, 1, i,−i).

(3) Suppose a + id = c + ib = 0. Then (α, β, γ) = (−1, β, 1), where β =
(b+ d+ ib− id)2/(b+ d− ib+ id)2. As (a, b, c, d) runs over the points in (5.2),
β takes on the values −1, −1, 1, 1, 0, ∞, respectively. As (a, b, c, d) runs over
the other points on the line a + id = c + ib = 0, β takes on every value in
k− {0,±1}.

Suppose a − id = c − ib = 0. Then (α, β, γ) = (−1, β, 1), where β =
(b+d− ib+ id)2/(b+d+ ib− id)2. As (a, b, c, d) runs over the points in (5.3), β
takes on the values −1, −1, 1, 1, ∞, 0. As (a, b, c, d) runs over the other points
on the line a− id = c− ib = 0, β takes on every value in k− {0,±1}.

By Lemma 2.3, A(β, 1,−1) ∼= A(−1, β, 1) ∼= A(1,−1, β) so to prove (3) it
suffices to show that A(α, 1,−1) has generators Y±,K,K ′ satisfying the stated
relations. We do this in Proposition 5.3 below. □

Proposition 5.3. Suppose α ∈ k− {0,±1}. Let i be a square root of −1.
(1) A(α, 1,−1) is a Sklyanin algebra A(E, τ) with τ being translation by a

4-torsion point.
(2) There is a basis Y±, K, K ′ for A(α, 1,−1)1 such that

KY± = ∓iY±K, K ′Y± = ±iY±K ′,

[Y+, Y−] = i(K ′2 −K2), [K,K ′] = iα(Y 2
+ − Y 2

−).

Proof. Let A = A(α, 1,−1). By Lemma 2.3, A(α, 1,−1) ∼= A(1,−1, α) ∼=
A(−1, α, 1). Algebras of the form A(1,−1, α) are those identified in equation
(1.9.4) of [21] so the results in [21] apply to A. The zero locus of the 4 × 4
minors in the proof of [21, Prop. 2.4] is the curve E given by the equations

(5.4) x20 + x21 + x22 + x23 = x20 − x21 + αx22 − αx23 = 0.

The restrictions on α imply that the Jacobian matrix has rank 2 at all points
of E so E is an elliptic curve. (The description of E, in particular, the formula
for the polynomial g2, in [21, Prop. 2.4] does not make sense when β = 1.) The
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formula for the automorphism σ : E → E in [21, Cor. 2.8] is

(5.5) σ


x0
x1
x2
x3

 =


2αx1x2x3 − x0(−x20 − x21 − αx22 + αx23 )
2αx0x2x3 + x1( x20 + x21 − αx22 + αx23 )
2x0x1x3 + x2( x20 − x21 + αx22 + αx23 )
− 2x0x1x2 + x3( x20 − x21 − αx22 − αx23 )

 =


x1
x0
x3
−x2

 ,

where the last equality uses the fact that x20 − x21 + αx22 − αx23 = 0 on E. The
formula for σ can also be verified by observing that

−x1 x0 −αx3 −αx2
−x2 −x3 x0 −x1
−x3 x2 x1 x0
−x3 −x2 x1 −x0
−x1 −x0 −x3 x2
−x2 x3 −x0 −x1




x1
x0
x3
−x2

 = 0

for all (x0, x1, x2, x3) ∈ E; the 6×4 matrix in the previous equation is the 6×4
matrix in (3.1).

Corollary 2.11 in [4] involves elements a, b, c ∈ k such that a2 = α, b2 = 1,
and c2 = −1; let (a, b, c) = (a, 1, i); [4, Cor. 2.11] then says there is a 4-torsion
point ε1 ∈ E such that if p = (x0, x1, x2, x3) ∈ E, then

p+ ε1 = (ix1,−ix0, ix3, ix2) = (x1,−x0, x3, x2);

by [4, §2.6], there is a 2-torsion point γ2 ∈ E such that p + ε1 + γ2 =
(x1, x0, x3,−x2); thus

σ(p) = p+ ε1 + γ2.

Calculations like those in [21, §1.2] show that Y± := x0 ± x1, K := x0 + x1,
K ′ := x0 − x1, satisfy the relations in (2). □

Part (2) of Proposition 5.3 remains true when A = A(0, 1,−1) and in
that case, A(0, 1,−1) is a homogenization of the quantized enveloping alge-
bra Uq(sl2) with q = −i. See [7, §2.4] for details.

5.3. Parameter spaces and modular curves. After Proposition 5.3(1),
it is natural to ask which pairs (E, τ) have the property that A(E, τ) ∼=
R(a, b, c, d) for some point (a, b, c, d) in the “Sklyanin locus” ℓ◦1 ∪ ℓ◦2.

Similarly, we can ask how much redundancy there is in this parametrization:
how many (a, b, c, d) ∈ ℓ◦1 ∪ ℓ◦2 lead to the same pair (E, τ)?

Since the transformation

a←→ −c, b←→ −d

interchanges ℓ1 and ℓ2 and intertwines the respective transformations

(a, b, c, d) 7→ β,

it suffices to consider what happens for ℓ1.
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Note first that the map

(5.6) φ : (a, b, c, d) 7→ (b+ d+ ib− id)2

(b+ d− ib+ id)2

recovering the parameter α of the Sklyanin algebra A(α, 1,−1) from (a, b, c, d) ∈
ℓ◦1 is a two-fold cover of

X := P1 − {±1, 0,∞}.
Now, to each α ∈ X associate the elliptic curve Eα of point modules of
A(α, 1,−1), defined by (5.4). Since furthermore the point (1, 1, i, i) belongs
to all Eα, the α-indexed family E → X of elliptic curves Eα over X has a
section.

Finally, (5.5) defines an automorphism of order 4 of the family E → X.
Since the section (1, 1, i, i) puts on E a unique structure of an abelian curve
over X [13, Theorem 2.1.2], we can identify said automorphism with a point of
E of order (precisely) 4. In other words, we obtain a family of abelian curves
over X with marked order-4 points. This moduli problem is represented by
the modular curve Y1(4) classifying such data (see e.g. [9, Theorem 8.2.1] and
references therein), and hence we obtain a morphism

ψ : X → Y1(4).

The following results give the full picture of the parametrization of the Cho-
Hong-Lau algebras.

Proposition 5.4. The map ψ : X = P1 − {±1, 0,∞} −→ Y1(4) defined above
as

X ∋ α 7→ (E, τ) ∈ Y1(4) for A(α, 1,−1) ∼= A(E, τ)

is a two-fold cover, identifying ±α.

Proof. Note first that the automorphism

(x0, x1, x2, x3) 7→ (x0, x1, x3,−x2)
of P3 interchanges the elliptic curves Eα and E−α, and moreover it intertwines
their respective order-4 automorphisms defining them as points of Y1(4). This
implies that ψ factors through a morphism

ψ′ : X/± → Y1(4).

Since Y1(4) is known to have three cusps and the left-hand side is a thrice-
punctured projective line, ψ′ extends to a endomorphism ψ′ of P1. It follows
from the fact that three distinct points have singleton preimages that ψ′ is an
isomorphism, and hence so is ψ′. □

In conclusion, we have:

Corollary 5.5. The maps ℓ◦i −→ Y1(4), i = 1, 2, that send (a, b, c, d) to the
underlying elliptic curve and automorphism of the Sklyanin algebra R(a, b, c, d)
are fourfold covers.
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Proof. Simply compose ψ and its analogue for ℓ2 (which are double covers by
Proposition 5.4) with the two-fold covers of the form (5.6). □

6. Central elements

6.1. Central elements in A(α, β, γ). The next result is often asserted but
we could not find a proof in the literature so we include one here.

Proposition 6.1. Let k be any field. If {α, β, γ} ∩ {0,±1} = ∅ and α + β +
γ + αβγ = 0, then −x20 + x21 + x22 + x23 and x20 + βγx21 − γx22 + βx23 belong to
the center of A(α, β, γ).

Proof. Let’s simplify the notation by omitting the x’s and just retaining the
subscripts, so kji denotes xkxjxi, ii0 denotes xixix0, and so on. We also write
{i, j} for {xi, xj}, [i, j] for [xi, xj ], etc.

For each cyclic permutation (i, j, k) of (1, 2, 3), we define

ci := [x0, xi]− αi{xj , xk} and ai := {x0, xi} − [xj , xk].

Straightforward computations in the free algebra k⟨x0, x1, x2, x3⟩ show that

{xi, ci} = {i, [0, i]} − αi{i, {j, k}}
= [0, ii]− αi(ijk + kji)− αi(ikj + jki), and

[xi, ai] = [i, {0, i}]− [i, [j, k]]

= [ii, 0]− (ijk + kji) + (ikj + jki).

When α1 + α2 + α3 + α1α2α3 = 0, error-prone calculations3 show that

(1 + α2α3){x1, c1}+ α2α3[x1, a1]

+ (1 + α3){x2, c2}+ α3[x2, a2]

+ (1− α2){x3, c3} − α2[x3, a3]

equals [x0, x
2
1 + x22 + x23]. Hence [x0,−x20 + x21 + x22 + x23] = 0 in A(α1, α2, a3).

A similar calculation shows that

(1 + α2)
(
{x0, c1}+ α1[x0, a1]

)
+ (1− α1)[x3, c2]

+ (1 + α1 + 2α1α2){x3, a2} − (1 + α1α2)
(
[x2, c3] + {x2, a3}

)
= (1 + α1)(1 + α2)[x1,−x20 + x21 + x22 + x23].

Hence [x1,−x20+x21+x22+x23] = 0. The transformation x0 7→ x0, xi 7→ xi+1 for
i = 1, 2, 3, and αi 7→ αi+1 for i = 1, 2, 3, leaves −x20+x21+x22+x23 fixed; it follows
that [x2,−x20 + x21 + x22 + x23] = 0 and then that [x3,−x20 + x21 + x22 + x23] = 0.
This completes the proof that −x20 + x21 + x22 + x23 belongs to the center of
A(α1, α2, α3) when {α1, α2, α3}∩{0,±1} = ∅ and α1+α2+α3+α1α2α3 = 0.

The automorphism ψ1 in Table 1 sends −x20+x21+x22+x23 to x20+α2α3x
2
1−

α3x
2
2 + α2x

2
3 so the latter also belongs to the center of A(α1, α2, α3). □

3In carrying out these calculations one should not attempt to “simplify” the expressions

ijk + kji and ikj + jki.
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Proposition 6.2. Let k be any field. If αβγ ̸= 0 and α + β + γ + αβγ ̸= 0,
then x20, x

2
1, x

2
2, and x

2
3, belong to the center of A(α, β, γ).

Proof. We use the same notation as that in the proof of Proposition 6.1. Calcu-
lations in k⟨x0, x1, x2, x3⟩ show that if (i, j, k) is a cyclic permutation of (1, 2, 3),
then

(αj + αk){xi, ci} − αi(αjαk + 1)[xi, ai]

− αi(αk + 1)
(
{xj , cj}+ [xj , aj ]

)
+ αi(αj − 1)

(
{xk, ck}+ [xk, ak]

)
= (α1 + α2 + α3 + α1α2α3)[x0, x

2
i ],

(αj + αk){xj , ai}+ (αjαk + 1)[xj , ci]

− (αk + 1)
(
αj{xi, aj}+ [xi, cj ]

)
+ (αj − 1)

(
[x0, ak]− {x0, ck}

)
= (α1 + α2 + α3 + α1α2α3)[xk, x

2
j ],

(αi + αk){xi, aj} − αi(αjαk + 1)[xi, cj ]

+ (αi + 1)
(
{x0, ck} − [x0, ak]

)
− (αk − 1)

(
αi{xj , ai} − [xj , ci]

)
= − (α1 + α2 + α3 + α1α2α3)[xk, x

2
i ],

and

− (αj + αk){x0, ci} − αi(αjαk + 1)[x0, ai]

+ αi(αk + 1)
(
αj{xk, aj} − [xk, cj ]

)
+ αi(αj − 1)

(
αk{xj , ak}+ [xj , ck]

)
= − (α1 + α2 + α3 + α1α2α3)[xi, x

2
0].

Since the images of ai and ci in A(α1, α2, α3) are zero, if α1 + α2 + α3 +
α1α2α3 ̸= 0, then [x0, x

2
1] = [x0, x

2
2] = [x0, x

2
3] = 0 and [x1, x

2
3] = [x2, x

2
1] =

[x3, x
2
2] = 0 and [x1, x

2
2] = [x2, x

2
3] = [x3, x

2
1] = 0 in A(α1, α2, α3). □

6.2. Degree-two central elements in R(a, b, c, d). It is conjectured at
[8, p. 47] that the elements

C1 := ax1x3 + bx2x4 + cx22 + dx21

and

C2 := a′(v)(x1x3 +x3x1)+ b′(v)(x2x4 +x4x2)+ c′(v)(x22 +x24)+ d′(v)(x21 +x23)

generate the center of R(a, b, c, d) (we have suppressed an irrelevant scaling
constant from the original expression of C2 in [8]). In order to have a little
more symmetry, and to emphasize the parallels with the Sklyanin algebras, we
will replace C1 by

Z1 := a(x1x3 + x3x1) + b(x2x4 + x4x2) + c(x22 + x24) + d(x21 + x23),

which is equal to 2C1, and replace C2 by the element Z2 in Corollary 6.5 below,
and show that Z1 and Z2 belong to the center of R(a, b, c, d).

Proposition 6.3. For all a, b, c, d ∈ k, the element Z1 is central in R(a, b, c, d).
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Proof. In terms of the generators zi in Proposition 5.1,

(6.1) Z1 = 2(b+ c)z20 + 2(a+ d)z21 + 2(−a+ d)z22 + 2(−b+ c)z23 .

Using the expression for Z1 in (6.1), we get

(6.2) [z0, Z1] = 2(a+ d)[z0, z
2
1 ] + 2(−a+ d)[z0, z

2
2 ] + 2(−b+ c)[z0, z

2
3 ].

We now label the relations in the statement of Proposition 5.1 (in the form
LHS − RHS) according to which commutator or anticommutator involving z0
they contain. For example, the first and third relations in Proposition 5.1 are

c1 = (a− b− c+ d)[z0, z1]− (−a− b+ c+ d){z2, z3} = 0

and

a2 = (a+ b+ c− d){z0, z2} − (−a+ b− c− d)[z3, z1] = 0.

With this in place, we leave the reader to check that (6.2) equals

{z1, c1} − [z1, a1] + {z2, c2}+ [z2, a2]− 2{z3, c3} − 2[z3, a3],

which obviously belongs to the ideal generated by the relations ci and ai. Thus
[z0, Z1] = 0.

We now prove that [Z1, zi] = 0 for i = 1, 2, 3 by changing the labels of the zi
and the structure constants a, b, etc. so that both Z1 and the space of relations
in Proposition 5.1 are preserved. The transformation

z0 ←→ z1, z2 ←→ z3, a←→ b, c←→ d

is such a relabeling so the fact that [Z1, z0] = 0 implies [Z1, z1] = 0. The
transformation

z0 ←→ z3, z1 ←→ z2, a←→ −a, b←→ −b

(while c and d are fixed) is another such transformation, so the fact that
[Z1, z0] = 0 implies [Z1, z3] = 0. Finally, composing the two transformations
will prove that [Z1, z2] = 0. □

Proposition 6.4. Let

ρ2 =
(a+ b− c+ d)(−a+ b− c− d)
(−a+ b+ c+ d)(a+ b+ c− d)

and ρ3 =
da

bc
.

Assume that the denominators in the expressions for ρ2 and ρ3 are non-zero.
Fix q2 and q3 such that q42 = ρ2 and q43 = ρ3, and define

τ0 := −q2q3, τ1 := 1/q2q3, τ2 := q2/q3, τ3 := q3/q2.

The linear map ψ : R1 → R1 given by the formula

ψ(z0) = τ0z1, ψ(z1) = τ1z0, ψ(z2) = τ2z3, ψ(z3) = τ3z2,

extends to an algebra automorphism of R(a, b, c, d).
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Proof. By Proposition 5.1, R is k⟨z0, z1, z2, z3⟩ modulo the relations:

ci = κi[z0, zi]− µi{zj , zk} and ai = λi{z0, zi} − νi[zj , zk],

where (i, j, k) runs over the cyclic permutation of (1, 2, 3) and

κ1 = a− b− c+ d, µ1 = −a− b+ c+ d,

κ2 = −a+ b+ c+ d, µ2 = a+ b− c+ d,

κ3 = b, µ3 = d,

λ1 = a+ b+ c+ d, ν1 = a− b+ c− d,
λ2 = a+ b+ c− d, ν2 = −a+ b− c− d,
λ3 = c, ν3 = a.

Furthermore,
τ0τ1
τ2τ3

= −1, τ0τ2
τ3τ1

= −ρ2 = −µ2ν2
κ2λ2

,
τ0τ3
τ1τ2

= ρ3 =
µ3ν3
κ3λ3

.

Since

ψ(c1)=κ1τ0τ1[z1, z0]− µ1τ2τ3{z3, z2}, ψ(a1)=λ1τ0τ1{z1, z0} − ν1τ2τ3[z3, z2],
ψ(c2)=κ2τ0τ2[z1, z3]− µ2τ3τ1{z2, z0}, ψ(a2)=λ2τ0τ2{z1, z3} − ν2τ3τ1[z2, z0],
ψ(c3)=κ3τ0τ3[z1, z2]− µ3τ1τ2{z0, z3}, ψ(a3)=λ3τ0τ3{z1, z2} − ν3τ1τ2[z0, z3],

we have

τ−1
2 τ−1

3 ψ(c1) = −κ1[z1, z0]− µ1{z3, z2} = c1,

τ−1
2 τ−1

3 ψ(a1) = −λ1{z1, z0} − ν1[z3, z2] = −a1,

τ−1
3 τ−1

1 ψ(c2) = −κ2ρ2[z1, z3]− µ2{z2, z0} = −
µ2

λ2
a2,

τ−1
3 τ−1

1 ψ(a2) = −λ2ρ2{z1, z3} − ν2[z2, z0] =
ν2
κ2
c2,

τ−1
1 τ−1

2 ψ(c3) = κ3ρ3[z1, z2]− µ3{z0, z3} = −
µ3

λ3
a3,

τ−1
1 τ−1

2 ψ(a3) = λ3ρ3{z1, z2} − ν3[z0, z3] = −
ν3
κ3
c3.

Hence ψ extends to an algebra automorphism, as claimed.
Since ψ2(z0) = τ0τ1z0 = −z0, ψ2 ̸= idR. Since (τ0τ1)

2 = (τ2τ3)
2 = 1,

ψ4 = idR. □

Corollary 6.5. With the notation and hypotheses in Proposition 6.4, The
element

Z2 := (a+d)(q2q3)
−2z20+(b+c)(q2q3)

2z21+(c−b)(q2/q3)2z22+(d−a)(q3/q2)2z23
belongs to the center of R.

Proof. Let ψ be the automorphism in Proposition 6.4. Since Z2 = ψ
(
1
2Z1

)
, the

result follows from Proposition 6.3. □
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Birkhäuser Boston, Boston, MA, 1990.
[2] W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics, 1327,

Springer, Berlin, 1988. https://doi.org/10.1007/BFb0080378

[3] R. G. Chandler and M. Vancliff, The one-dimensional line scheme of a certain family of
quantum P3s, J. Algebra 439 (2015), 316–333. https://doi.org/10.1016/j.jalgebra.

2015.04.036

[4] A. Chirvasitu and S. P. Smith, Exotic elliptic algebras of dimension 4, Adv. Math. 309
(2017), 558–623. https://doi.org/10.1016/j.aim.2017.01.010

[5] A. Chirvasitu and S. P. Smith, Exotic elliptic algebras, Trans. Amer. Math. Soc. 371

(2019), no. 1, 279–333. https://doi.org/10.1090/tran/7341
[6] A. Chirvasitu, S. P. Smith, and M. Vancliff, A geometric invariant of 6-dimensional

subspaces of 4× 4 matrices, Proc. Amer. Math. Soc. 148 (2020), no. 3, 915–928. https:
//doi.org/10.1090/proc/14294

[7] A. Chirvasitu, S. P. Smith, and L. Z. Wong, Noncommutative geometry of homogenized

quantum sl(2,C), Pacific J. Math. 292 (2018), no. 2, 305–354. https://doi.org/10.
2140/pjm.2018.292.305

[8] C.-H. Cho, H. Hong, and S.-C. Lau, Noncommutative homological mirror functor, Mem.

Amer. Math. Soc. 271 (2021), no. 1326, v+116 pp. https://doi.org/10.1090/memo/
1326

[9] F. I. Diamond and J. Im, Modular forms and modular curves, in Seminar on Fermat’s

Last Theorem (Toronto, ON, 1993–1994), 39–133, CMS Conf. Proc., 17, Amer. Math.
Soc., Providence, RI, 1995.

[10] D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer,

New York, 1995. https://doi.org/10.1007/978-1-4612-5350-1
[11] B. L. Feigin and A. Odesskii, Vector bundles on an elliptic curve and Sklyanin algebras,

in Topics in quantum groups and finite-type invariants, 65–84, Amer. Math. Soc. Transl.
Ser. 2, 185, Adv. Math. Sci., 38, Amer. Math. Soc., Providence, RI, 1998. https://doi.

org/10.1090/trans2/185/04

[12] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer,
New York, 1977.

[13] N. M. Katz and B. C. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathe-

matics Studies, 108, Princeton Univ. Press, Princeton, NJ, 1985. https://doi.org/10.
1515/9781400881710

[14] P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent develop-

ments, in Integrable quantum field theories (Tvärminne, 1981), 61–119, Lecture Notes
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