DOI QR코드

DOI QR Code

Border Crossing and Boundary Objects in Elementary Science Education Assessed with Grounded Theory Methodology

근거이론 방법론을 바탕으로 한 초등 과학교육에서 경계넘기와 경계물의 의미 탐색

  • Received : 2023.04.10
  • Accepted : 2023.05.11
  • Published : 2023.05.31

Abstract

Recently, science education is placing great importance on convergence and integration. This study explored the meaning of border crossing and boundary objects, using the grounded theory method among elementary school teachers experienced in convergence classes. Following Charmaz's (2006) Grounded Theory of Constructivism, this study established theoretical bases in relation to three kinds of coding phases while recognizing subjectivity through interactions between participants and researchers. Then, using snowball sampling, 13 elementary school teachers were selected as research participants. Analysis of open survey and interview data from those teachers indicated that border crossing could be divided into four stages, according to the learning mechanism used: the identification stage in which implementations are compared with each other; the adjustment stage, where collaboration and routine exchanges are developed between implementations; the reflection stage in which perspectives on implementations are expanded; the transition stage, where new implementations are jointly developed through collaboration. Two or three subfactors were extracted for each stage to clarify the detailed meaning of border crossing. Within science education, boundary objects were classified into four kinds: integrated boundary objects and place boundary objects, which are visible and artificial; study-aid book boundary objects and black box boundary objects, which are invisible; two subfactors could be extracted from each boundary object to create detailed meanings for the boundary objects. Interestingly, the common feature in all these kinds is that they use science and objects from the surroundings in an interactive way.

융합과 통합을 강조하는 현 과학교육의 실태에 따라 본 연구에서는 융합적 수업에 경험이 있는 초등교사들을 대상으로 근거이론을 활용하여 초등 과학교육에서 경계넘기와 경계물에 대한 의미를 탐색하였다. Charmaz(2006)의 구성주의적 근거이론에 따라 참여자와 연구자의 상호작용을 통해 주관성을 인정하면서 세 가지 코딩 단계에 따라 이론적 근거를 구축하였다. 눈덩이 표집법을 통하여 연구 참여자로 총 13명의 초등교사를 모집하였다. 초등교사들의 개방형 설문 내용과 면담자료를 분석한 결과 경계넘기의 의미는 학습 메커니즘에 따라 4단계로 분류할 수 있었다. 다양한 실행들을 서로 비교해서 무엇인지를 알아내는 것인 식별 단계, 실행 간의 협력과 일상화된 교류를 낳게 하는 조정 단계, 실행에 대한 관점을 확장하는 반성 단계, 협력을 통해 새로운 실행을 공동으로 개발시키는 전환 단계로 분류되었으며, 각 단계의 경계넘기의 의미로 2~3개의 하위 내용을 추출할 수 있었다. 과학교육에서 경계물의 의미로는 가시적이고 인공물인 통합적 경계물과 장소적 경계물, 학습지 경계물, 그리고 비가시적인 블랙박스 경계물로 나눌 수 있었으며, 각 경계물 의미로 2개의 하위 내용을 추출할 수 있었다. 4가지 경계물의 공통점은 과학과 주변의 대상을 상호작용적으로 이용한다는 것이었다.

Keywords

Acknowledgement

이 논문은 2022년도 대구교육대학교 학술연구비 지원으로 연구한 것임

References

  1. 교육부(2022). 과학과 교육과정. 교육부.
  2. Aikenhead, G. S. (1996). Science education: Border crossing into the subculture of science. Science Education, 69(4), 453-475. https://doi.org/10.1002/sce.3730690403
  3. Akkerman, S. F., & Bakker, A. (2011). Boundary crossing and boundary objects. Review of Educational Research, 81(2), 132-169. https://doi.org/10.3102/0034654311404435
  4. Bae, J., Yun, B., & Kim, J. (2013). The effects of science lesson applying STEAM education on science learning motivation and science academic achievement of elementary school students. Journal of Korean Elementary Science Education, 32(4), 557-566.
  5. Bakhtin, M. (1984). Problems of dostoevsky's poetics (C. Emerson, Trans.). Minneapolis: University of Minnesota Press.
  6. Charmaz, K. (2006). Constructing grounded theory a practical guide through qualitative analysis. London Sage Publications.
  7. Engestrom, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14(1), 133-156. https://doi.org/10.1080/13639080020028747
  8. Engestrom, Y., Engestrom, R., & Karkkainen, M. (1995). Polycontextuality and boundary crossing in expert cognition: Learning and problem solving in complex work activities. Learning and Instruction, 5(4), 319-336. https://doi.org/10.1016/0959-4752(95)00021-6
  9. Forstorp, P. A. (2005) The many uses of boundaries in higher education. at The 37th World Congress of the International Institute of Sociology, Stockholm, July 5-9, 2005.
  10. Garraway, J. (2010). Knowledge boundaries and boundary-crossing in the design of work-responsive university curricula. Teaching in Higher Education, 15(2), 211-222. https://doi.org/10.1080/13562511003620035
  11. Geiger, S., & Finch, J. (2009). Industrial sales people as market actors. Industrial Marketing Management, 38(6), 608-617. https://doi.org/10.1016/j.indmarman.2009.04.003
  12. Glaser, B., & Strauss, A. (1967). The discovery of grounded theory strategies for qualitative research. Mill Valley, CA Sociology Press.
  13. Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative res earch. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 105-117). London: Sage.
  14. Harrison, C. (2018). Boundary crossing during pre-service teacher training: empowering or hampering professional growth?. Cultural Studies of Science Education, 13(4), 1129-1133. https://doi.org/10.1007/s11422-017-9812-6
  15. Hoyles, C., Bakker, A., Kent, P., & Noss, R. (2007). Attributing meanings to representations of data: The case of statistical process control. Mathematical Thinking and Learning, 9(4), 331-360. https://doi.org/10.1080/10986060701533326
  16. Kisiel, J. F. (2014). Clarifying the complexities of school-museum interactions: Perspectives from two communities. Journal of Research in Science Teaching, 51(3), 342-367. https://doi.org/10.1002/tea.21129
  17. Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press: Chicago.
  18. Kynigos, C., & Kalogeria, E. (2012) Boundary objects for in service mathematics teacher education: the case of scenarios and half-baked microworlds, Sp. Issue in Online Mathematics Education. The International Journal of Mathematics Education, ZDM, Springer Verlag. Marcelo C. Borba & Salvador Llinares, 44, 733-745.
  19. Lakatos, E. (1986). Sample size determination in clinical trials with time-dependent rates of losses and noncpmpliance. Controlled Clinical Trials, 7(1), 189-199. https://doi.org/10.1016/0197-2456(86)90047-4
  20. Lee, S. (2022). A new reading of Wittgenstein. Paju: Acanet.
  21. Matusov, E., Smith, M., Candela, M. A., & Lilu, K. (2007). Culture has no internal territory: Culture as dialogue. In J. Valsiner & A. Rosa (Eds.), The Cambridge handbook of sociocultural psychology (pp. 460-483). New York, NY: Cambridge University Press.
  22. Morag, O., & Tal, T. (2012). Assessing learning in the outdoors with the field trip in natural environments (FiNE) framework. International Journal of Science Education, 34(5), 745-777.
  23. O'Reilly, M., & Dogra, N. (2017). Interviewing children and young people for research. London, England: Sage.
  24. Spelt, E. J. H., Biemans, H. J. A., Tobi, H., Luning, P. A., & Mulder, M. (2009). Teaching and learning in interdisciplinary higher education: A systematic review. Educational Psychology Review, 21(4), 365-378. https://doi.org/10.1007/s10648-009-9113-z
  25. Star, S. L. (1989). The structure of ill-structured solutions: Boundary objects and heterogeneous distributed problem solving. In L. Gasser & M. Huhns (Eds.), Distributed artificial intelligence (pp. 37-54). San Mateo, CA: Morgan Kaufmann.
  26. Star, S. L. (2010). This is not a boundary object: Reflections on the origin of a concept. Science, Technology, & Human Values, 35(5), 601-617. https://doi.org/10.1177/0162243910377624
  27. Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, "translations" and boundary objects: Amateurs and professionals in Berkeley's Museum of Vertebrate Zoology, 1907-1939. Social Studies of Science, 19(3), 387-420. https://doi.org/10.1177/030631289019003001
  28. Strauss, A., & Corbin, J. (1998). Basics of qualitative research techniques and procedures for developing grounded theory. Thousand Oaks, CA Sage.
  29. Sun, D., & Looi, C. K. (2017). Designing boundary activity for mobile learning in science inquiry. In W. Chen, J. C. Yang, A. F. Mohd Ayub, S. L. Wong, & A. Mitrovic (Eds.), Proceedings of the 25th International Conference on Computers in Education (pp. 656-661). Retrieved from http://icce2017.canterbury.ac.nz/sites/default/files/proceedings/main/C4/Designing%20Boundary%20Activity%20for%20Mobile%20Learning%20in%20Science%20Inquiry.pdf
  30. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York: Cambridge University Press.
  31. Williams, J., & Wake, G. (2007). Black boxes in workplace mathematics. Educational Studies in Mathematics, 64(3), 317-343. https://doi.org/10.1007/s10649-006-9039-z