DOI QR코드

DOI QR Code

Antioxidant, anticancer, and wound-healing properties of roridin E isolated from mycelial culture medium of Podostroma cornudamae mushroom

  • Si Young Ha (Department of Environmental Materials Science/Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Dong Hwan Lee (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Ji Young Jung (Department of Environmental Materials Science/Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Han Min Park (Department of Environmental Materials Science/Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jae-Kyung Yang (Department of Environmental Materials Science/Institute of Agriculture and Life Science, Gyeongsang National University)
  • Received : 2023.03.27
  • Accepted : 2023.06.08
  • Published : 2023.06.30

Abstract

Roridin E, a constituent of Podostroma cornu-damae, has excellent medicinal properties and exhibits powerful anticancer effects. However, being a poisonous mushroom, P. cornu-damae is difficult to find in its natural environment. Therefore, only a limited amount of roridin E is isolated from P. cornu-damae. We isolated roridin E from mycelial culture medium of P. cornu-damae and examined its effects on five breast cancer cell lines. The purity of the isolated roridin E was 96%. It exhibited anticancer effects on all five breast cancer cell lines, with an IC50 of at least 0.0006 mg/L. To the best of our knowledge, this is the first report on the investigation of effects of roridin E isolated from the mycelium of P. cornu-damae mushrooms on five breast cancer cell lines. However, safety issues should be investigated and addressed in future studies before roridin E is used in clinical settings.

Keywords

Acknowledgement

This study was carried out with the support of 'Project No. "NRF-2021K1A3A1A12103353' provided by National Research Foundation of Korea (NRF).

References

  1. Abbas HK, Tak H, Boyette CD, Shier WT, Jarvis BB. 2001. Macrocyclic trichothecenes are undetectable in kudzu (Pueraria montana) plants treated with a high-producing isolate of Myrothecium verrucaria. Phytochemistry 58: 269-276. https://doi.org/10.1016/S0031-9422(01)00214-X
  2. Abuelgasim KA, Alsharhan Y, Alenzi T, Alhazzani A, Ali YZ, Jazieh AR. 2018. The use of complementary and alternative medicine by patients with cancer: a cross-sectional survey in Saudi Arabia. BMC Complement Altern Med 18: 1-8. https://doi.org/10.1186/s12906-017-2057-9
  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68: 394-424. https://doi.org/10.3322/caac.21492
  4. Choe S, In S, Jeon Y, Choi H, Kim S. 2018. Identification of trichothecene-type mycotoxins in toxic mushroom Podostroma cornu-damae and biological specimens from a fatal case by LC-QTOF/MS. Forensic Sci Int 291: 234-244. https://doi.org/10.1016/j.forsciint.2018.08.043
  5. Heer E, Harper A, Escandor N, Sung H, McCormack V, Fidler-Benaoudia MM. 2020. Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study. Lancet Glob Health 8: e1027-e1037. https://doi.org/10.1016/S2214-109X(20)30215-1
  6. Isaka M, Punya J, Lertwerawat Y, Tanticharoen M, Thebtaranonth Y. 1999. Antimalarial activity of macrocyclic trichothecenes isolated from the fungus Myrothecium verrucaria. J Nat Prod 62: 329-331. https://doi.org/10.1021/np980323x
  7. Janbon G, Quintin J, Lanternier F, d'Enfert C. 2019. Studying fungal pathogens of humans and fungal infections: Fungal diversity and diversity of approaches. Genes Immun 21: 237-245. https://doi.org/10.1016/j.micinf.2019.06.011
  8. Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P. 2014. An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr 8: 440-451. https://doi.org/10.4161/cam.36224
  9. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, Dolznig H. 2013. In vitro cell migration and invasion assays. J Vis Exp 752: 10-24. https://doi.org/10.1016/j.mrrev.2012.08.001
  10. Kupchan SM, Streelman DR, Jarvis BB, Dailey Jr RG, Sneden AT. 1977. Isolation of potent new antileukemic trichothecenes from Baccharis megapotamica. J Org Chem 42: 4221-4225. https://doi.org/10.1021/jo00862a011
  11. Lakornwong W, Kanokmedhakul K, Soytong K, Unartngam A, Tontapha S, Amornkitbamrung V, Kanokmedhakul S. 2019. Types A and D trichothecene mycotoxins from the fungus Myrothecium roridum. Planta Med 85: 774-780. https://doi.org/10.1055/a-0895-5753
  12. Lee SR, Seok S, Ryoo R, Choi SU, Kim KH. 2018. Macrocyclic trichothecene mycotoxins from a deadly poisonous mushroom, Podostroma cornu-damae. J Nat Prod 82: 122-128.
  13. Lheureux S, Braunstein M, Oza AM. 2019. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin 69: 280-304. https://doi.org/10.3322/caac.21559
  14. Liang CC, Park AY, Guan JL. 2007. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2: 329-333. https://doi.org/10.1038/nprot.2007.30
  15. Matthews HK, Bertoli C, de Bruin RA. 2022. Cell cycle control in cancer. Nat Rev Mol Cell Biol 23: 74-88. https://doi.org/10.1038/s41580-021-00404-3
  16. Nicoletti R, Fiorentino A. 2014. Antitumor metabolites of fungi. Curr Bioact Compd 10: 207-244. https://doi.org/10.2174/1573407211666141224204809
  17. Peres de Carvalho M, Weich H, Abraham WR. 2016. Macrocyclic trichothecenes as antifungal and anticancer compounds. Curr Med Chem 23: 23-35. https://doi.org/10.2174/0929867323666151117121521
  18. Placido AI, Roque F, Morgado M. 2022. The promising role of mushrooms as a therapeutic adjuvant of conventional cancer therapies. Biologics (Basel) 2: 58-68. https://doi.org/10.3390/biologics2010005
  19. Ridge CD, Mazzola EP, Coles MP, Hinkley SF. 2017. Isolation and characterization of roridin E. Magn Reson Chem 55: 337-340. https://doi.org/10.1002/mrc.4539
  20. Saikawa Y, Okamoto H, Inui T, Makabe M, Okuno T, Suda T, Hashimoto K, Nakata M. 2001. Toxic principles of a poisonous mushroom Podostroma cornu-damae. Tetrahedron 57: 8277-8281. https://doi.org/10.1016/S0040-4020(01)00824-9
  21. Ueno Y, Sawano M, Ishii K. 1975. Production of trichothecene mycotoxins by Fusarium species in shake culture. Appl Microbiol 30: 4-9. https://doi.org/10.1128/am.30.1.4-9.1975
  22. Wagenaar MM, Clardy J. 2001. Two new roridins isolated from Myrothecium sp. J Antibiot (Tokyo) 54: 517-520. https://doi.org/10.7164/antibiotics.54.517
  23. Waks AG, Winer EP. 2019. Breast cancer treatment: a review. JAMA 321: 288-300. https://doi.org/10.1001/jama.2018.19323
  24. Zhang J, Yin WB. 2021. Characterisation of two unique sesquiterpenoids from Trichoderma hypoxylon. Mycology 13: 1-7. https://doi.org/10.1080/21501203.2021.1964630
  25. Zhu M, Cen Y, Ye W, Li S, Zhang W. 2020. Recent advances on macrocyclic trichothecenes, their bioactivities and biosynthetic pathway. Toxins (Basel) 12: 417-432. https://doi.org/10.3390/toxins12060417