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A HOPF BIFURCATION IN AN ATTRACTION-ATTRACTION
CHEMOTAXIS SYSTEM WITH GLOBAL COUPLING

YOONMEE HAM

ABSTRACT. We consider a bistable attraction-attraction chemotaxis system with
global coupling term. The study in this paper asserts that conditions for chemotactic
coefficients for attraction and attraction and the global coupling constant to show
existence of stationary solutions and Hopf bifurcation in the interfacial problem as
the bifurcation parameters vary are obtained analytically.

1. Introduction

We are concerned with the chemotaxis system (see [3,6,9,14,15,20]):
eolU; = e2V2U — eV - (kiU Vx(V)) + eV - (kU VEW)) + F(U,V),
1) V="V 4uU-v,
W, =V2W+U+V -W, 0<z<1,t>0,

where U(z,t) is a cell density, V(z,t) and W (x,t) are the chemical concentrations
of attractant and repellent and F(U,V) = —U —V + H(U — ap). The parameters
€,0,K1, Ko, b and ag are positive constants, V is the gradient operator, x(V) and
&(W) are the chemical sensitivity functions.

The system with e = 1, F = 0 and a domain = € (0, 00) is globally well-posed in
the sense that ko — uk; > 0 in [7]. The solution behavior of (1) with F' = 0 in the
multi-dimensional case was essentially determined by the competition of attraction
and repulsion which is characterized by the sign of ko — ury in [16,17].

In this paper, we consider the attraction-attraction system satisfying that x'(V') > 0
for V> 0 and (W) < 0 for W > 0( [16]) and the threshold aq is replaced by the
total activator and inhibitor concentration in the medium ( [8,13,19]):

(2) a:ao+y</01(U+V)dx—so>

where ag and sy are positive constants, and v characterizes the intensity of global
coupling.
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We shall deal with the following a free boundary problem which is reduced from
(1) with the global coupling term (2) and investigate the existence of time periodic
solutions. A free boundary problem of (1) with the global coupling term (2) is given
by :

Vi=Vee — (u+ 1)V +puH(x—n(t), 0<z<1,t>0

(3) Wy =Wy — W+ Hx—n(t), 0<z<1,t>0
Ve(0,t) =0 =V,(1,t), W.(0,t) =0=W,(1,¢), t > 0.
Let A be an operator defined by A := —% + 1+ 1 with domain D(A) = {V €

H22((0,1)) = Vo(0,8) = 0, Vi(1,2) = 0}. Let Ay := —&, + 1 with domain D(Ag) =
{W e H*?((0,1)) : W,(0,t) =0, W,(1,t) = 0}. The velocity of the interface n(t) is
given by (see [12,18]);

dn(t) _ 1
@) = ;(C(V(U(t)); a) + k1 Va(n(t),t) — k2 Wx(n(t)7t)>v 1(0) = no,
where C'is a continuously differentiable function defined on an interval I := (—a, 1—a),
which is given by ( [2,8,12])

1—2a—2r

(5) C(T;a):_\/(r—l—a)(l—a—r)

with a = ag + v(1 —n — sp).

The organization of the paper is as follows: In section 2, a change of variables
is given which regularizes problem (3) in such a way that results from the theory of
nonlinear evolution equations can be applied. In this way, we obtain a regularity of the
solution which is sufficient for an analysis of the bifurcation. We show the existence
of equilibrium solutions for (3) and obtain the linearization of problem (3) under the
condition of global coupling constant v. In section 3, we investigate the conditions
to obtain the periodic solutions and the bifurcation of the interface problem as the
parameter ¢ varies and examine the global coupling effect.

2. Equilibrium solutions and Linearization of the interface equation

In order to apply semigroup theory to (3), we choose the space X := Ly(0,1) with
norm || - ||o. To get differential dependence on initial conditions, we decompose V' in
(3) into two parts: w, which is a solution to a more regular problem and g, which is
less regular but explicitly known in terms of the Green’s function G of the operator
A. Namely, we define g : [0, 1] x [0,1] = R, by

g(z,n) = AN uH( — 1)) = / Glx,y) Hly —n) dy,

where G : [0,1] x [0,1] — R is a Green’s function of A satisfying the Neumann
boundary conditions, and v : [0,1] = R, v(n) := g(n,n). If we take a transformation
u(t)(x) = V(x,t)—g(x,n(t)), we have (u;)(t)(z) = Vi(x,t)—g.(x,n(t)). Since G, (z,n)
is discontinuous, we cannot obtain one step more regular than that of (3). Let p(x,t) =
Vi(z,t) and define g : [0,1] x [0,1] — R,

3z, ) = AN pb(- — n)(x)) = p / G,y) 6y — ) dy,
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where G : [0,1]x[0,1] — R is a Green’s function of A satisfying the Dirichlet boundary
conditions, and :[0,1] = R, A(n) := g(n,n). We define j : [0,1] x [0,1] = R,

j(x,m) = Ay (H( /er (y—n)dy

and « : [0,1] = R, a(n) := j(n,n). Here J : [0,1]* — R is a Green’s function of A,
satisfying the boundary conditions. Define w(t)(x) = W (x,t) — j(x,n(t)), ¢(z,t) =
Wy (x,t) and define 7 : [0,1]) x [0,1] — R,

jla,n) = Ay (6(- = n)(z)) = /0 J(z,y) 6y —n) dy,

where J : [0,1] x [0,1] — R is a Green’s function of A, satisfying the Dirichlet
boundary conditions and & : [0,1] = R, &(n) :== j(n,7).
Applying the transformations u(t)(z) = V(z,t) — g(z,n(t)), v(t)(z) = p(z,?) —
g(l‘m(t)) and w(t)(x) = W(z,t) — j(z,n(t)), 2(t)(z) = q(z,t) = jz,n(?)), t
(6)
(ue+ Au= Gz, 1)(Culn) +v(n);a) + mi(v(n) +5(n) — ra(2(n) + a(n)))
)

?y
+4(n) = #a2(2(n) + a(n)))

~

v+ Av = —28G (2, 1) (Clu(n) +(n); a) + k1 (v(n)
w; + Agw = 2T (x,7) (C(uln) +~(n); a) + &1(v(n) +5(n) — Ka(z(n) + a(n)))
24 Aoz = =217 (2, 1) (Cluln) +~(n); a) + 51 (v(n) +4(n) — Ka(2(n) + &(n)))
L 7 (t) = 5 (Cluln) +~(n);a) + ki (v(n) +5(1)) — Ka(2(n) + a(n))), t >0
Thus, we obtain an abstract evolution equation equivalent to (3) :

(7)

C(lit(u v,w, = 77)+A(u v, W, =z 77) =1 f(UﬂJawaZﬂ?)a
(U, v, w, z, 77)(0> = (UU(Z'), UO(x)a wO(m)a ZO('x)7 770)7
where A is a 5 x 5 matrix where (1,1) and (2,2)-entries are an operator A, (3,3) and

(4,4)-entries are an operator Ay and all the others are zero. The nonlinear forcing
term f is

fi(n) - (far(u,v,w,2,0) + faz(u, v, w0, 2,m))

() - (far(u, 0,0, 2,m) + foo(u, v, w, 2,m))

flu,v,w,z,n) = | fs(n) - (fa(u,v,w,2,m) + for(u,v,w,2,1)) |,

fam) - (for(w,v,w,2,m) + fazu,v,w0,2,m)))
for(u,v,w, 8,m) + foa(u,v,w,z,n)

where £y (0,1) = X, filn)(@) = uGla.n), fo: (0.1) = X, foln)(x) = —2C(a, ),
f2:(0,1) = X, fs()(@) = J(z,n), fa: (0,1) = X, fa(n)(x) :== =3 J(2,n), for :
Y — Ca le(U,U,’LU,Z,T]) 7( ) a) f22 Y — C fQQ(u v,w, z,
k1(v(n) +5(n)) — Ka(2(n) and Y := {(u,v,w,z,m) € Cl( 1) x C’l(O,
C*(0,1) x C*(0,1) x (0,1 € 1, v(n) +43(n) € I, w(n) +aln) €
&(n) € I'} Copen C*(R) x CI(R) x CYR) x C*(R) x R.

P
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The well-posedness of solutions of (7) is shown in [5,9, 18] with the help of the
semigroup theory using domains of fractional powers 6§ € (3/4,1] of A, Ay and A
Moreover, the nonlinear term [ is a continuously differentiable function from W' N X X"
to X, where X := D(A) D(A) x D(A) x D(Ag) x D(Ag) xR, X% := D(A%) ; X§ :=
D(A‘)) and X?:= D(A?) = X% x X% x X x X{ x R.

The derivative of f can be obtained from the following in [4]:

LEMMA 2.1. The functions G(-,n) : (0,1) — X, G(-.n) : (0,1) = X, J(-.n) :
0,1) = X, J(-,n) : (0,1) = X, C(-): Y = Cand f : Y — X x R are continuously
differentiable with derivatives given by

D for (u, v, w, 2,m) (4, 0,0, 2, 7)) = C’(U(??) +7(77); a) - ( (77)77+ﬂ(77) +'(m)7)
n)i)

AAAAA

AAAAA

+(Df21(uavvw7 Z,T]) + Df22(u7v7w72777))(ﬁ’7ﬁ7w7 2777) ’ (fl(n)v f2<7]>7f3(77)7 f4<7]>7 1)

We shall examine the existence of equilibrium solutions of (7) and thus, we look
for (u*,v*,w*, z*,n*) € D(A)NY satisfying the following equations:

(Au= 2 puG(-,n)P(u,v,w,2,1)
Av=—L8G(,n)P
Aow = 2 J(-,n)P(u,v,w, z,1m)
Aozz—ié ( )
0= P(u,v,w,z,n)

| /(0 )_O—u( ), v(0) =0 =1v(1), w'(0) =0=w(l), 2(0) =0=2(1)

where P(u, v, w, 2,1) := C(u(n)+y(n); a)+rix (u(n)+v(n)) (v(n)+73(n)) — k28" (w(n)+
a(n))(z(n) + a(n)).

THEOREM 2.2. Suppose that 0 < 5 —ag + vso < 3v +7(3) for n € (3,1). Then
equation (7) has at least one equilibrium solution (0,0,0,0,7%), n* € (5,1). The lin-
earization of f at the stationary solution (0,0,0,0,n*) is

IUG(7 77*) Q(ﬁv @7 ?i), 27 77)
_:_* G(v 77*) Q(ﬁ’v r[J7 wa ’737 77)

(u7v7 w7 Z?n)

P(u7 /U7 w7 Z? 77)

_n_l* j(7 77*) Q(Iau @7 'lD, 27 77)

AAAAA

where Q(w, 0, W, 2,7) = 4(a(n*) ++'(n*)n — v ) + raX” (Y () (") (@) ++'(n*)7) +
rX (v () (0 (n* )+v( 1) — k" ()& (") (W(n*) +a' (n*)n) — k€' (a(n*)) (2(n*) +

")

K

&' (n*)n). The pair (0,0, 0,0,n*) corresponds to a unique steady state (V*, p*, W* ¢*,n*)
of (3) for o # 0 with V*(x) = g(z,n*), p*(x) = g(z,n*),W*(z) = j(z,n*) and
g (x) = j(x,n").
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Proof. From the system of equations (8), we have u* = 0,0* = 0,w* = 0 and
z* = 0. In order to show existence of n*, we define

['(n) := C(v(n);a) + k1 X' (v(n)) 7(n) — K€’ (a(m))é(n).
Then

I(n) = C'(v(n);a) + kX" (YY) () + kX' (v(0)7 (1) — K28 (a(n)) &' (n)
—r2€" ()’ (n)d(n).

Since v'(n) < 0 for n € (0,1), C'(v(n);a) < 0 for n € (0,1), and since x'(y(n)) >
0, &'(a(n)) <0 and ¥'(n) < 0,&(n) <0 for n € (1/3,1), we have I'(n) < 0 for (3,1).
Thus, we must have I'(3) > 0 and I'(1) < 0 in order for n* to exist in (5, 1).

The formula for D f(0,0,0,0,n*) follows from the relation C'(1/2—ag—v(1—s)) =
4, and the corresponding steady state (V*, p*, W* ¢*, n*) for (3) is obtained by using
the transformation and Theorem 2.1 in [4].

]

3. A Hopf bifurcation with a global coupling effect

In this section, we shall show that there exists a Hopf bifurcation from the curve
o +— (0,0,0,0,7%) of the equilibrium solution. First, let us introduce the following
relevant definition.

DEFINITION 3.1. Under the assumptions of Theorem 2.2, define (for 1 > 6 > 3/4)
the linear operator B from X% to X by

B = Df<07 07 07 07 T]*> °

We then define (0,0,0,0,7*) to be a Hopf point for (7) if and only if there exists an
€0 > 0 and a C'-curve

(—€0+ 75,7 + €) = (A(7), d(7)) € C x Xc

(X¢ denotes the complexification of the real space X) of eigendata for — A+ 7B with

(i) (~A+7B) (1)) = A)é(r), (~=A+7B)(@(1)) = A7) 6(7);
(i) (%) =1if with 8 > 0; B
(7ii) Re (N\) # 0 for all A in the spectrum of (—A 4+ 7*B) \ {£if};
(iv) Re N'(7*) # 0 (transversality);

where 7 = 1/0.

Next, we check (7) for Hopf points. For this we have to solve the eigenvalue
problem:

—Z(u,v,w,z,n) + TB(%anaZﬂ?) = )\[5(u,v,w,z,77),
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where 5 is an 5 x 5 identity matrix. This is equivalent to

(

(A+Nu=1uG(,n")R(u,v,w, z,n),

(A+ANv=—-15 G(,n*) R(u,v,w, z,1),
(9) (Ao + Nw =71 J(,n*)R(u,v,w, z,m),

(Ao +A)z = —Tn% J(, ) R(u, v, w, z,1),

\ An=T1R(u,v,w,z,n),

where R(u,v,w,z,m) = 4(u(n®) + ' (n")n — vn) + rada(u(n®) +~'(r )n) + radi(v(n”) +
Y (07 )m) —kads(w(n*)+o/ (n*)n)— /<»'2d4( (")+d'(n")n)), dv = X' (v(n")), dz = X" (v(n™))3(n"),
d3 = &"(e(n))a(n*) and dy = ' (a(n")).

We shall show that an equilibrium solution becomes a Hopf point.

THEOREM 3.2. Suppose that 0 < % —ag + vsg < %V + 7(%), ds < Z—i‘ < 0 and

0 < ;l—i < dy. Suppose the operator —A+ 7B has a unique pair {£if}, f > 0 of
purely imaginary eigenvalues for some 7 > 0. Then (0,0,0,0,n*,7*) is a Hopf point
for (7).

Proof. We assume without loss of generality that § > 0, and ®* is the (normalized)
eigenfunction of —A + 7* B with eigenvalue i3. We have to show that (®*,i/3) can be

extended to a C'-curve 7 — (®(7), A\()) of eigendata for —A+ 7B with Re(N (7%)) #
0.

For this, let ®* = (v, vo, wo, 20,Mm0) € D(A) x D(A) x D(Ap) x D(Ap) x R. First,
we note that 79 # 0. Otherwise, by (9), (A + i)Yy = ifun G(-,n*) = 0 and
(A+4iB)vy = _nﬂ* 161 G(-,n*) = 0, which is not possible given A is symmetric. So,
without loss of generality, let 9 = 1. Then E(vy, vo, wo, 20,18, 7*) = 0 by (9), where

E:D(A)c x D(A)c x D(Ag)c X D(Ag)c X Cx R — X x X x X x Xg x C,

(A+Nu—7pG(n") R (")

(A+Nv+T7&G(n") R (")

(Ao + Nw —7J(,n")R* (") |,

(Ao + Nz + 75 J( ") R (")
A —TR*(n")

E(u,v,w,z,\,T) :

where R*(n") = (4 + rady) (u(n”) ++'(n)) — 4w + kady (v(n*) +7' (")) — rads(w(n®) +
o' (n*)) — kady(2(n*) + & (n*)). The equation E(u,v,w,z, A\, 7) = 0 is equivalent to A
being an eigenvalue of —A + 7B with eigenfunction (u,v,w, z,1). We shall apply the
implicit function theorem to E. For this we check that E is of C'— class and that
(10)

D (00,20 E (10, v0, wo, 20,18, 7°) € L(D(A)cx D(A)c x D(Ag)c x D(Ag)c xCxR, X xC)
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is an isomorphism. In addition, the mapping
D20 E (0, v0, wo, 20,38, 7%) (4, 9,10, 2, A)
(A+iB)a+ Mo — G ()
(A+iB)0 + hvo + 7 G (-, ")
()

*

(44 rid2)a(n*) + k1d19(n*) — Kads(n*) — Kadaz(n*))

(44 K1d2)t(n*) + k1d10(n*) — Kads(n*) — Kads2(n*))

= | (Ao +iB)i + Awo — 7 J (-, ") (4 + k1da)a(n*) + k1d19(n*) — Kadsd(n*) — Kadaz(n*))

(Ao +iB)2 4+ Azo + 7 =T (-, ") (4 + k1d2)i(n*) + Kada (") — radsib(n*) — KadaZ ("))
A =7 (4 + Kido)a(n*) + K1di0(n*) — rads () — KadaZ(n*))

is a compact perturbation of the mapping
(1,1, 2, 3) — ((A+iB)it, (A+8)0, (Ao + iB)i, (Ay +i8)2,A)

which is invertible. Thus, Dy y.w,- £, vo, wo, 20,16, 7*) is a Fredholm operator of
index 0. Therefore, in order to verify (10), it suffices to show that the system of
equations

D(u,v,w,z,A)E(¢07 Vo, Wo, 20, Zﬁv T*)(IAL, QAJ7 12), 2?7 /\) =0

which is equivalent to

11
( (24 +iB)i+ Ao = T G ) (4 + mada)i(n*) + kidid(n*) — Kadstb(n*) — kadaZ(n*))
(A+iB)0 + vy = # () (4 + Kado)a(n*) + kidid(n*) — kads(n*) — KadaZ(n*))
(Ag + i)t + Awp = 77*)((4 + wrda)a(n*) + r1did () — kads(n*) — KadaZ(n*))
Ao+ i8)2 + Azg = —m* LT () (4 + kido)a(n*) + rk1di0(n*) — Kadsib(n*) — kada2(n"))
(A= 7% ((4+ radg)a(n* ) r1di0(n*) — kada(n*) — KadaZ(n*))

necessarily implies that @« = 0, v = 0, w = 0, 2 = 0 and A =0 If we define
¢'_ wO_MG(u )75'_1} +#G(>7)*)7p: wO_J(an*) andC:: ZO+77L*J<'777*)7
then (11) becomes

(12) (A+iB)i+ A =0,

(13) (A+iB)0+ A =0,

(14) (A +iB)i + Ap = 0,

(15) (Ao +iB)z + A =0,

(16) Ti* = (4 + Kldg)ﬁ(n*) + /{1d1’f)(77*) — /igngAJ(T]*) — I{Qd42(7’]*).

On the other hand, since E (v, vo, wo, 20,18, 7*) = 0, ¢, &, p and ( are solutions to the
equations, we have:

(17) (A+iB)d = —poy,
(18) (A+ip)e = Lo,

(19) (Ao +iB)p = —0y,
(20) (Ao +iB)C = —0,,
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(21) )
D= (4 +md2)(@0r) + pGy ) ++' () — 4v + k1di (E07%) — L& GO, ) + 4 (7"))
—#ad3(p(0*) + T (1%, 0*) + /(")) = rada(C(*) — e (", 0%) + & (7).

Multiplying (13) and (18) by ¢, and (12) and (17) by £ and subtracting one from
the other, we now obtain

(22) w(n®) = —n*o(n"), w(n) = —n"2(n"),

(23) o) =—n" &), p(n") = —n* C(n°).
Multiplying (12) by (4 + k1d2)@, (13) by —n*k1d &, (14) by —pukedsp and (15) by
wn*kadsC and adding the resultants to each, and multiplying (17) by (4 + k1dy)o, (18)

by —n*k1di€, (19) by —ukedsp and (15) by pun*keds¢ and adding the resultants to
each, and from (21), we obtain

0 ) :

(24) e (4 + r1da)||@]* — 0" mady||€]]> — pusads||pl]? + g kada €[]
and thus

(25) / ((4 + mldg)ﬂg_b - ﬁ*ﬁldlﬁg - ,uligdglz}ﬁ + [M’]*ligdgl?:’Z) = 0.

Now, multiplying (12) by (4 + rkida)t, (17) by —n*k1di0, (14) by —puredsd and
(15) by pn*kedsz and adding the resultants to each, we now obtain

(44 rada) | AY2a[2 = sy || AV202 — pusad || A 0|2 + oy eadl| AY 2] ?)
+iB((4+ mada)[al P = ka0 — pcads] 0] + o adl 2]
—|'5\ f <(4 + H1d2)¢a — n*lild1€5 — ;m:zdng + ,U?f/igd;;f?) =0
and from (25), we have
(26)
(4 + ryda)|[ AV |2 — 7 kdy || AY20] |2 — prsads] | Ay 0] + pn*rada|| Ay 2% = 0
(4 + kade)||]* — 7 krda|[0]|> — puriads|[]]7 + py* ada] | 2| = 0.
Multiplying (17) by ¢ and (18) by &, we then get
. YR m o=
Y2011 4 38ll01[* = =) and [JAY2€I* + iBl[¢]* = - E0r)
and applying (22) to the above equation, we have

(27) [AY201* = (n*[|AV%¢]1 and [1¢]1* = (n*)?ll€][*.

Now, multiplying (12) by 2i3a and (17) by A and subtracting the resultants from
each other, we now obtain

2iB(|1AY%al[* — ()| AY%0]*) — 282 (Jfall® — ()% 1911%) + A(llel* — ") [I€]1%).
Applying (27) to the above equation, we have
[ AY2al? — ()?|AY20|? = 0 and [|a|f* — (n*)*/0]]* = 0
and thus (26) implies:

Kidyn . d .
M+n@f—1jﬂwﬁ+umﬁé—@mwﬁz&
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Sincedg—z—i>Oandf]—ﬁf—dg>O,Wehaveﬂ:()andwzo,andso,17:0,2:
0, A= 0. O

THEOREM 3.3. Under the same condition as in Theorem 3.2, (0,0,0,0,n*, 7%) sat-
isties the transversality condition. Hence, this is a Hopf point for (7).

Proof. By implicit differentiation of E(vo(7), vo(T), wo(7), 20(7), A(17),7) = 0, we
find that

D (w20 E (W0, v0, wo, 20, 18, 7%) (W5 (77), vp (), wo (77), 20(77), X' (7))
pG(n*)S ()
— L G(m)S ()
= J(m)S(n") :
— L JCn)S()

where S(%) = (4 4 r1d2)(Wo(n") +7'(n")) + K1 di(vo(n") + ¥ (7)) — rads(wo(n”) +
o' (n*)) ody(zo(n*) + &'(n*)). This means that the functions @ := ¥y(7*), 0 :=
6 *

(%), @ = wh(T7), Z = 25(1*) and A := X (%) satisfy the equations
[ (A+iB)a+ Mo — 7 uG () S () = pG () S(r),
(A+iB)D + Ao + 7 2 G(, ) S() = — £ G, n)S ()
(28) (Ao +iB)d + Apo — 7+ (-, ) S () = J (-, n*)S(n),
(Ao +iB)Z + Ao+ 7% J(,n)S(n*) = =& J (-, n")S (")
L AT+ fﬁdz)ﬁ(ﬁ*) + R dy0(") — RadsW(n*) — RadaZ(n*)) = S(n%).

By lettlng ¢ = Q/}O_/“LG(J 77*)7 5 = UO+7%GA('7 77*)7 pP = wo—J(ﬂ]*) and C - ZO_j('a n*>
as before, we obtain

(29) (A+if)a+ Ao =0,
(30) (A+iB)D + X =0,
(31) (Ag 4 iB)i + A\p = 0,
(32) (Ag+iB8)z2 4+ A =0,
(33) A= ((4+ md)u(n") + radi0(n") — radgb(n*) — radsZ()) = 2.

Multiplying (29) by (4 + rk1ds)d, (30) by —n*k1di€, (31) by —prodsp and (31) by
un*rkodsC and adding the resultants to each, we now obtain

—(4 4 rada)pt(n”) = radp (") — pkiads @ (177) + pn*RadaZ(17°)

A4+ rada)[[¢]]” — 0" madu [ |€]]” — prads|lpl|” + o eadal[C]]?)

—|—2ZB f ((4 + fildg)’llg_b - n*fﬂldlﬂf - ,uligdglz}ﬁ + ,Lbn*lizd4gz) = 0.
From (24) and (33), the above equation implies that

(34)5< 92 +225/ 4+ K1da)ip — n*K1di0€ — purads® P+ pn* KodaZ C)
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Multiplying (29) by (4 + k1da) @, (30) by —n*kd;0, (31) by —pkadsw and (32) by
un*kodyz and adding the resultants to each, we now obtain

(4 + rudo) || AV?4][2 — ke || AY20| 2 — pkads|| Ay @7 + pn*rada] | Ay 2| 2
i (4 -+ rada) |2 = e |91 = usads| 3] + o o 2]
A [ (4 + r1da) g — 0" K1 di 0 — pkadswp + pn*kadszC) = 0.
From (34), we have
N sitsr = (4 rada) [ AV 2 — sy || AV25][2 — purads|| Ag | + i ads| Ag/ 2]
B (4 -+ mada) ]2 = s |[9]]° — preads] |01 + i acds |21 2)

The real part of the above is given by
(35)
Red = (4++1da)|| A0l =" cdy || AY?5] P = purads || Ag/ @+ 10" ol || Ag 2],

il
2(7*)2

Now, multiplying (29) by 2i3% and (30) by A and subtracting resultants from each
other, we now obtain

|AY2a][* = (*)*|AY?5]? = 0 and ||a]|* - (y")]|o]]* = 0
by (27). Thus (35) implies that

( kidq dy

LRG:\ 4+I€1d2—n—)||A1/2u||2—|—l€2(n——d3)||A(1)/2u~;||2

2(77)?

which is positive since dy > Z—i >0 and 0 > f]—jﬁ > d3. We have ReX (7*) > 0 for 8 > 0,
and thus, by the Hopf-bifurcation theorem in [1], there exists a family of periodic
solutions which bifurcates from the stationary solution as 7 passes 7*. O

We shall show that there exists a unique 7% > 0 such that (0,0,0,0,7*, 7%) is a
Hopf point; thus 7* is the origin of a branch of nontrivial periodic orbits.

LEMMA 3.4. Under the same condition as in Theorem 3.2, let Gg and Gﬁ be
Green functions of the differential operator A + if satisfying (17) and (18), re-
spectively. Then, the expression (4 + k1d2) Re (Gg(n*,n*)) — %Re (Gs(n*,n*)) and

—ds(Re(Js(n*,n*)) + f]—i(Re(jg(n*, n*)) are strictly decreasing in 3 € R with
ReGo(n™, ") = GOr™,"), - lim Re G (i, ") = 0.
Moreover,

—(d+r1da) Tm(Gg (7", "))+ 2B Im (G p (0", 1))+ RadsTm(Ja(n*, 7)) =28 Tm (5 (%, 7)) > 0
for 5 > 0.

Proof. First, we have (A+if)~! = (A—iﬁ)(AQ—l—BQ)_ soif L(B) := Re (A+i8)!,
then L(B) = A(A% + 5%)~!. Moreover, L(3) — A™! as 8 — 0 and L(8) — 0 as
8 — oo, which results in the corresponding limiting behavior for Re (Gg( * 7)*))
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~

Now to show that 8+ ((4 + k1d2) Re (Gs(n*, 1)) — 4 Re (Gg(n*, 7)) is strictly

,’7*

decreasing, define h(B)(r) = (4 + k1d2) Ga(r,n*) — r1dy G’B(r, n*) — do G(r,n*) +

77*

”é—fl G(r,n*). Then (in the weak sense initially)

(36) (A+iB)h(B) = —iB(4 + k1d)G(, ") + iBELG (0", ).

As a result h(fB) € D(A)c and h : RT — D(A)¢ is differentiable with ih(8) + (A +
iB)W (B) = —i G(-,n*), therefore
(A+ i) (8) = —i((4 + Kada) Ga(-,n") — BEG (-, 7)),
Thus, we get
(37)
i (44 rady — SF)GF) = [(A+ i8R ER BN dr
= [(A+iB)l'(B) - (A+iB)l(B) dr
= [ AN (B)]> = B[ (B)[? dr + 2i8 [ AW/ ()1 (B) dr .

From (37) it follows that
—(4+ rady — = )Re (W(B) (7)) = 28 [ |AV2R (B)]? > 0

77*

and thus Re (R'(8)(n*)) < 0 if dy > %.

n
In order to show (4 + k1ds) Im(Gs(n*,n*)) — ";—ffl Im(Gg(n*,n*)) <0 for B >0, we

multiply (36) by h(8)(r) and integrate the resulting equation, then we have:
~i B(4+r1dy = S)R(B) () = [ A(A+iB)h(B)(r)h(B)(r) dr = [ [ARB)*+iB [ AlR(B)P,

which implies that —f3(4 + r1dy — "L )Imh(8)(1*) = [ |Ah(B)[* > 0. Since dy > Z—i,
we have Imh(8)(n*) < 0 for 5 > 0.
We define k(B)(r) := ds Js(r,n*) — % Ja(r,n*) —ds J(r,n*) + % J(r,n*). Then

(—ds + 2)Re (K'(8) (")) = 28/|A5* K (B)||* > 0
B(—ds + L)Imk(8) () = || Aok(B)|> > 0.

If0> ;l—:f > ds, we have Rek/(5)(n*) > 0 and Imk(S3)(n*) > 0 for > 0. Thus, —(4 +
kidy ImGa (0", 0*) + 22 Tm Gy (0, 17" + ko T (Js (7, 7)) — 522 Tm (g (n*, ")) > O for
B>0ifdy > Z—i and % > ds. Similarly, (44k1d>) Re (Gﬁ(n*,n*))—"%—flRe (Ga(n*,n*))—
rodsRe(Jg(n*,n*)) + ”;—?‘Re(jg(n*, n*)) is a strictly decreasing function of 5 > 0 since
d2>z—iandz—i>d3. O

THEOREM 3.5. Under the same condition as in Theorem 3.2, for a unique critical
point 7% > 0, there exists a unique, purely imaginary eigenvalue A = if3 of (9) with
8> 0.

Proof. We only need to show that the function (u, v, w, z, 8, 7) — E(u,v,w, 2,18, T)
has a unique zero with 8 > 0 and 7 > 0. This means solving the system of equations

(9) with A = i, u =V — MG(JI*), v =p-+ %G(W*)»’w =W - J(ﬂ?*) and
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(A+iB)V = —pdy-,

(A+if)p = & by,

(Ao + Zﬁ)W = =0y,

(Ao +iB)g = ién*a

L= (44 mdo) (V) + pG s n*) + 7/ (n) = v + rada(p(n*) — LG, n") +4' (1))
—rady(W(n*) + J (7", ") + o' (7)) — Kada(q(n*) — 7= (7", %) + &' ("))

The real and imaginary parts of the above equation are given by
(38)
L= (At mdo)m(—pGs (")) + 5 (G (7, 1)) + adsTm( (" 1))
— =28 (s (0", "))

and
0= (4+ ridz)(Re(—pGs(n*,n")) + pG(n*,n*) ++'(n*)) — 4v
+r1dy (Re(£Gg (" ))—# (%) + 4 ()
—radz(Re(=Js(n*, ")) + J(n* ) o' (%))

A

(=
—kady(R e(iJ( ))—LJ(H ) + & ().

n*
There is a critical point 7* provided the existence of § since the right hand side of
(38) is positive by Lemma 3.4.
We now define

T(8) = (4+ rada)(Re(—uGa(n*,n")) + nG (0", ") ++' (")) — 4v + r1di (Re(L&Gp(n*, 7))
— LG, ") + 4 (7)) — radz(Re(=Jg(n", %)) + J (", n*) + o ("))
—rada(Re(3= (0", %)) = o= J (", ") + & (7).

Using Lemma 3.4, we have T(5) > 0 for 5 > 0 and
T(0) =@+ rido)y (") — 4v + kidi¥ () — Kadza! (%) — K2dad (")

and thus 7(0) < 0if 0 < § — ag + vsp < 2v +7(3). Moreover,

Nm T(8) = (44 mady = ) (G (0" ")+ (") = 4v + madi 7' ()

+hig (& d3)(J(77 n) + ' (n")) — kadsd'(n)
= (kady — "8 — kad)) (G (0", 1)+ (7)) + 4(uG (7", ) ++' () — v)
+K1d1m<sinh wfcosh(mm)

+/€2(d_i - d3 + d4)(°]<7]*7 77*) + Oé,<7]*)) - H2d4smh1 ( Sinh @)2 COSh n*
n

Since uG (7", n") +7'(77) > 0, J(n*, ") + a'(") > 0,5 (") < 0,6"(n") < 0 for 7" €
(1/3,1), ﬁlim T(B) > 0 under the assumptions dy > (n%+1)d1 >0, 0> (n%+1)d4 > ds
—00

and v < uG(n*,n*) ++'(n*) thus, there exists a unique > 0. O

The following theorem summarizes the results above.
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THEOREM 3.6. Suppose that 0 < § — ag + vso < 2v +7(3). Then (7) and (3) has
at least one stationary solution (u*,v*, w*, z*,n*) where u* = v* = w* =2* =0, n* €
(%, 1) and (V*, p*, W* ¢*,n*) for all T, respectively. Moreover, assume that dy > (77L +
1)d, and (ni* + 1)dy > ds, where dy = X'(v(n*)) > 0, da = X"(v(n*))¥(n*) > 0,ds =
" (a(n®)a(n*) < 0anddy = &' (a(n*)) < 0 and the global coupling constant v satisfies
that v < uG(n*,n*)++'(n*). Then there exists a unique 7 such that the linearization
—A + 7B has a purely imaginary pair of eigenvalues. The point (0,0,0,0,n*,7%) is
then a Hopf point for (7), and there exists a C°-curve of nontrivial periodic orbits for
(7) and (3), bifurcating from (0,0, 0,0,n*, 7%) and (V*, p*, W* ¢*,n*, 7*), respectively.
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