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SOME THEOREMS ON RECURRENT MANIFOLDS AND

CONFORMALLY RECURRENT MANIFOLDS

Jaeman Kim

Abstract. In this paper, we show that a recurrent manifold with harmonic cur-
vature tensor is locally symmetric and that an Einstein and conformally recurrent
manifold is locally symmetric. As a consequence, Einstein and recurrent manifolds
must be locally symmetric. On the other hand, we have obtained some results for
a (conformally) recurrent manifold with parallel vector field and also investigated
some results for a (conformally) recurrent manifold with concircular vector field.

1. Introduction

Let M be an n(≥ 4)-dimensional Riemannian manifold and let gij, R
i
jkl and W i

jkl

be the Riemannian metric tensor, the Riemannian curvature tensor and the Weyl
curvature tensor on M respectively. Also ∇s denotes covariant differentiation with
respect to gij. A Riemannian manifold M is said to be recurrent (resp. conformally
recurrent) [1,3,6] if ∇sR

i
jkl = θsR

i
jkl (resp. ∇sW

i
jkl = θsW

i
jkl), where θs is a 1-form.

In this paper, we shall study (conformally) recurrent manifolds satisfying various
conditions. More precisely, we prove the followings:

Theorem 1.1. Let M be a manifold either recurrent and has harmonic curvature
tensor, or Einstein and conformally recurrent. Then M is locally symmetric.

It is obvious that a recurrent manifold is conformally recurrent. Consequently, we
have

Corollary 1.2. Let M be an Einstein and recurrent manifold. Then M is locally
symmetric.

Concerning a (conformally) recurrent manifold with parallel vector field, we prove

Theorem 1.3. If M is a recurrent manifold with parallel vector field V j, then
either M is flat or V j is orthogonal to θi.

We also obtain
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Theorem 1.4. If M is a conformally recurrent manifold with parallel vector field
V j, then either M is conformally flat or V j is orthogonal to θi.

Consequently, we have

Corollary 1.5. If M is a recurrent manifold with parallel vector field V j such
that V j is not orthogonal to θi, then M is flat.

Corollary 1.6. If M is a conformally recurrent manifold with parallel vector field
V j such that V j is not orthogonal to θi, then M is conformally flat.

A vector field V j is called to be concircular [8] if it satisfies ∇sV
j = ρδjs + φsV

j,
where ρ is a scalar function and φs is a gradient vector. Concerning a recurrent
manifold with concircular vector field, it is known [7] that every one with concircular
vector field is flat. On the other hand, we show

Theorem 1.7. Let M be a conformally recurrent manifold with concircular vector
field V j. Then the following cases occur: (1) M is conformally flat, (2) ρ+ 1

2
V jθj = 0.

As a consequence, we obtain

Corollary 1.8. If M is a conformally recurrent manifold with concircular vector
field V j such that ρ+ 1

2
V jθj 6= 0, then M is conformally flat.

2. Preliminaries

Let M be an n(≥ 4)-dimensional Riemannian manifold with Riemannian metric
tensor gij and let Ri

jkl, Rij, R and W i
jkl be the Riemannian curvature tensor, the Ricci

tensor, the scalar curvature and the Weyl curvature tensor respectively. From now
on the components of tensors shall be considered under orthonormal frame and we
adopt the summation convention of Einstein, but, as we work with orthonormal frame,
there is no need to raise and lower the indices. For instance, using our notation, we
have Rij = Raija, R = Rabba. The curvature tensor Rijkl is called harmonic provided
∇iRijkl = 0. Note that the second Bianchi identity implies ∇iRijkl = ∇lRjk −∇kRjl.
M is called Einstein if and only if there exists a real-valued function λ on M such that
Rij = λgij. If dim M ≥ 3, then λ must be a constant [2,4,5]. Hence every n(≥ 4)-
dimensional Einstein manifold has harmonic curvature tensor. We shall consider the
Weyl curvature tensor Wijkl on M given by

Wijkl = Rijkl−
1

n− 2
(Rilδjk−Rikδjl +Rjkδil−Rjlδik) +

R

(n− 1)(n− 2)
(δilδjk− δikδjl).

In particular, if M is Einstein, then we have

Wijkl = Rijkl −
R

n(n− 1)
(δilδjk − δikδjl).

As is well known, the Weyl curvature tensor satisfies

(1) Wijkl = −Wjikl = −Wijlk = Wklij,

(2) Wiikl = Wijil = Wijki = 0,Wijkl +Wiljk +Wiklj = 0.

A Riemannian manifold M is said to be recurrent (resp. conformally recurrent) if
∇sRijkl = θsRijkl (resp. ∇sWijkl = θsWijkl). In particular, it is said to be locally
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symmetric (resp. conformally symmetric) if∇sRijkl = 0 (resp. ∇sWijkl = 0). A vector
field Vj defined by the following equation is called to be concircular:∇sVj = ρδjs+φsVj,
where ρ is a scalar function and φs is a gradient vector. The concircular vector field,
for the first time, was considered by Yano [8] in the theory of his concircular geometry.
He has obtain many interesting results. Concerning about a recurrent manifold with
concircular vector field, Okumura [7] proved that a recurrent manifold with concircular
vector field is flat.

3. Proof of Theorem 1.1

We assume that the Riemannian curvature tensor Rijkl of M satisfies

∇sRijkl = θsRijkl,∇sRsijk = 0.

By virtue of the above equations, we obtain

θsRsijk = 0.

From the above equation and the second Bianchi identity, we get

θsθsRijklRijkl = ∇sRijkl∇sRijkl = (∇lRijks −∇kRijls)θsRijkl =

= (θlRijks − θkRijls)θsRijkl = θlθsRijksRijkl + θkθsRijslRijkl = 2θlθsRijksRijkl = 0,

from which follows that either θs = 0 or Rijkl = 0. Therefore, in any case, we see
that ∇sRijkl = 0. Hence M is locally symmetric. Now we suppose that M is both
conformally recurrent and Einstein. A function f on M is defined as follows; f =
WijklWijkl. Let U ′ be the subset of M consisting of points x in M such that f(x) = 0.
Then we have

∇sf = (∇sWijkl)Wijkl +Wijkl∇sWijkl = 2θsf

on the open subset M − U ′ and hence we have 2θs = ∇sf
f
, from which it follows

that 2θs = ∇slog|f |. This implies that ∇mθn = ∇nθm on M − U ′. Therefore, since
∇m∇nWijkl = (θmθn +∇mθn)Wijkl on M , we have

∇m∇nWijkl = ∇n∇mWijkl.

Accordingly, by the Ricci identity, we get

(3) RmnirWrjkl +RmnjrWirkl +RmnkrWijrl +RmnlrWijkr = 0.

Differentiating (3) covariantly and taking into account of ∇pWijkl = θpWijkl and (3),
we have

(4) (∇pRmnir)Wrjkl + (∇pRmnjr)Wirkl + (∇pRmnkr)Wijrl + (∇pRmnlr)Wijkr = 0.

Since M is both Einstein and conformally recurrent, we obtain

∇pRijkl = ∇pWijkl = ∇p[Rijkl −
R

n(n− 1)
(δilδjk − δikδjl)] =

= θp[Rijkl −
R

n(n− 1)
(δilδjk − δikδjl)].

By virtue of the above equation, the equation (4) yields

(θpRmnir)Wrjkl + (θpRmnjr)Wirkl + (θpRmnkr)Wijrl + (θpRmnlr)Wijkr−

− θpR

n(n− 1)
[(δmrδni − δmiδnr)Wrjkl + (δmrδnj − δmjδnr)Wirkl+
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+(δmrδnk − δmkδnr)Wijrl + (δmrδnl − δmlδnr)Wijkr] = 0.

Now putting n = i in the above equation and taking account of (3) , we have

θpR

n(n− 1)
[(n− 2)Wmjkl +Wkjml +Wljkm] = 0.

By virtue of (1) and (2), the above equation implies that

θpRWmjkl = 0,

from which follows

(5) R∇pWmjkl = 0.

Since M is Einstein, M has either R = 0 identically or R 6= 0 everywhere. In any case,
by virtue of (5), M is locally symmetric. This completes the proof of Theorem 1.1.
Since an Einstein and recurrent manifold is conformally recurrent and has harmonic
curvature tensor, Theorem 1.1 implies that Corollary 1.2 holds.

4. Proof of Theorem 1.3 and Theorem 1.4

Let Vj be a parallel vector field. Since Vj satisfies ∇mVj = 0, we have

∇n∇mVj −∇m∇nVj = 0.

Consequently, making use of the Ricci identity and the second Bianchi identity, we
have

VjRijmn = 0, VjRjm = 0, Vj∇sRijmn = 0, Vj∇sRjm = 0,

Vj∇jRikmn = 0, Vj∇jRkm = 0, Vj∇jR = 0.

From the above equations and the definition of Weyl curvature tensor Wikmn, we
obtain

(6) Vj∇jRikmn = 0, Vj∇jWikmn = 0.

Let us assume that M is a recurrent manifold with parallel vector field Vj. Then (6)
implies that

VjθjRikmn = 0,

from which follows that either M is flat or Vj is orthogonal to θi. This completes the
proof of Theorem 1.3. Now suppose that M is a conformally recurrent manifold with
parallel vector field Vj. Then (6) implies that

VjθjWikmn = 0.

Therefore, we obtain that either M is conformally flat or Vj is orthogonal to θi. This
completes the proof of Theorem 1.4. Corollary 1.5 and Corollary 1.6 are immediate
consequences of Theorem 1.3 and Theorem 1.4 respectively.
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5. Conformally recurrent manifold and concircular vector field

Let us assume that M is a conformally recurrent manifold with concircular vector
field Vj. Then Vj satisfies

∇lVi = ρδil + φlVi,

where ρ is a scalar function and φl is a gradient vector. Differentiating the above
equation covariantly, we get

∇m∇lVi = (∇mρ)δil + ρφlδim + φlφmVi + (∇mφl)Vi.

Making use of the Ricci identity and taking account of the above equation, we have

VjRijlm = (ρφl −∇lρ)δim − (ρφm −∇mρ)δil.

Differentiating the above equation covariantly, we obtain

(∇sVj)Rijlm + Vj∇sRijlm = [(∇sρ)φl + ρ∇sφl −∇s∇lρ]δim−

−[(∇sρ)φm + ρ∇sφm −∇s∇mρ]δil,

from which follows by virtue of the above equation and the definition of concircular
vector field Vj

Vj∇sRlmij = −ρRislm + ψlsδmi − ψmsδil,

where ψls = (∇sρ)φl + ρ∇sφl + (∇lρ)φs − ρφlφs − ∇s∇lρ. From the second Bianchi
identity and the above equation, we have

(7) Vj∇jRlmsi = −2ρRlmsi − ψlsδmi + ψmsδil + ψliδms − ψmiδsl.

Consequently

(8) Vj∇jRms = −2ρRms + (n− 2)ψms + ψδms,

(9) Vj∇jR = −2ρR + 2(n− 1)ψ,

where ψ = ψmm. Now, from the definition of Weyl curvature tensor Wlmsi, we obtain

Vj∇jWlmsi = Vj∇jRlmsi −
Vj

n− 2
[(∇jRli)δms − (∇jRls)δmi + (∇jRms)δli−

−(∇jRmi)δls] +
Vj∇jR

(n− 1)(n− 2)
(δliδms − δlsδmi).

By virtue of (7), (8) and (9), the above equation implies

VjθjWlmsi = −2ρWlmsi.

Hence we conclude that either M is conformally flat or ρ = −1
2
Vjθj. This completes

the proof of Theorem 1.7. Corollary 1.8 is an immediate consequence of Theorem 1.7.
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