DOI QR코드

DOI QR Code

달 얼음-월면토 결합 형태에 따른 얼음 추출로 발생하는 침하량 평가

Experimental Evaluation of Ice-regolith Mixture Settlement Caused by Lunar Ice Extraction

  • 이장근 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 공정 (과학기술연합대학원대학교) ;
  • 진현우 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 유병현 (한국건설기술연구원 미래스마트건설연구본부)
  • Lee, Jangguen (Research Fellow, Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Gong, Zheng (Department of Civil and Environmental Engineering, Univ. of Science and Technology) ;
  • Jin, Hyunwoo (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Ryu, Byung Hyun (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2023.05.19
  • 심사 : 2023.06.07
  • 발행 : 2023.06.30

초록

달 얼음은 향후 인류의 심우주 탐사와 장기 체류를 위한 자원으로 활용될 수 있다. 달 얼음에 대한 기원 및 존재 유형은 여전히 가설로 남아 있다. 최근 세계 우주국에서는 달 얼음에 대한 원격탐사에서 지상탐사를 통해 정량적 매장량과 존재 유형을 밝히고자 경쟁적으로 미션을 계획하여 추진 중에 있다. 달 얼음의 매장량이 충분하다면 향후 얼음을 자원으로 활용하는 현지자원활용 개념이 각광받을 것으로 예상된다. 그러나 현재까지 얼음 추출에 따른 지반 공학적 관점에서 유의해야 하는 침하에 대한 검토는 전무한 실정이다. 본 연구에서는 인공월면토-얼음 존재 유형별로 얼음 추출로 인해 발생 가능한 침하량에 대한 실험적 연구결과를 제시하고 있다. 그 결과 초기 함수비 약 10%의 인공월면토-얼음 혼합토에서 상당한 침하가 발생하였다.

Lunar ice is a resource available for future human exploration in deep space and long-term extraterrestrial habitat. However, the origin and nature of lunar ice remains unclear. In addition to remote sensing, international space agencies are competitively planning and conducting missions for lunar surface exploration to determine the existence and resource extent of lunar ice. If a sufficient amount of lunar ice is confirmed, its future in-situ resource utilization is expected to be greatly beneficial. However, due to ice extraction, settlement may occur, which should be taken into account from a geotechnical engineering perspective. Herein, experimental investigations of the potential settlement caused by lunar ice extraction were conducted and different textures of lunar ice were simulated. Consequently, it was confirmed that significant settlement occurs even at the initial water content of ~10% in lunar regolith simulant-ice-mixed soil.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20230081-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

참고문헌

  1. Anand, M. (2010), "Lunar Water: a Brief Review", Earth Moon Planet, Vol.101, pp.65-73. https://doi.org/10.1007/s11038-010-9377-9
  2. Anand, M., Crawford, I. A., Balat-Pichelin, M., Abanades, S., vanWestrenen, W., Pe'raudeau, G., Jaumann, R., and Seboldt, W. (2012), "A Brief Review of Chemical and Mineralogical Resources on the Moon and Likely Initial in Situ Resource Utilization (ISRU) applications", Planetary and Space Science, Vol.74, pp.42-48. https://doi.org/10.1016/j.pss.2012.08.012
  3. Cannon, K. M. and Britt, D. T. (2020), "A Geologic Model for Lunar Ice Deposits at Mining Scales", Icarus, Vol.347, pp.1-11 https://doi.org/10.1016/j.icarus.2020.113778
  4. Cocks, F. H., Klenk, P. A., Watkins, S. A., Simmons, W. N., Cocks, J. C., Cocks, E. E., and Sussingham, J. C. (2002), "Lunar Ice: Adsorbed Water on Subsurface Polar Dust", Icarus, pp.386-397.
  5. Duke, M. B. (2002), "Lunar Polar Ice Deposits: Science and Utilization Objectives of the Lunar Ice Discovery Mission Proposal", Acta Astonautica, Vol.50, No.6, pp.379-383. https://doi.org/10.1016/S0094-5765(01)00184-9
  6. Feder, J. (2021), "NASA Prepares To Drill for the "Oil of Space"", Journal of Petroleum Technology, Vol.73, No.4, pp.24~28. https://doi.org/10.2118/0421-0024-JPT
  7. Heinicke, C. and Foing, B. (2021), "Human Habitats: Prospects for Infrastructure Supporting Astronomy from the Moon", Phil. Trans. R. Soc., A379:20190568.
  8. Hodges Jr., R. R. (2002), "Ice in the Lunar Polar Regions Revisited", J. of Geophysical Res., Vol.107, No.E2, pp.1-7. https://doi.org/10.1029/2000JE001491
  9. Jayathilake, B. A. C. S., Ilankoon, I. M. S. K., and Dushyantha, M. N. P. (2022), "Assessment of Significant Geotechnical Parameters for Lunar Regolith Excavations", Acta Astronautica, Vol.196, pp. 107-122. https://doi.org/10.1016/j.actaastro.2022.04.008
  10. Jin, H., Lee, J., Zhung, L., and Ryu, B.H. (2020), "Laboratory Investigation of Unconfined Compression behavior of Ice and Frozen Soil Mixtures", Geomech. Eng., Vo.22, No.3, pp.219-226.
  11. Lackner, R., Amon, A., and Lagger, H. (2005), "Artificial Ground Freezing of Fully Saturated Soil", J. Eng. Mech., Vol.131, No.2, pp.211-220. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(211)
  12. Murnane, A., Jackson, B., Amos, C., Pazar, C., and King, I. (2002), Mars Water Ice Prospecting Mission Study, Colorado School of Mines, pp.7-8.
  13. Ogishima, A. and Saiki, K. (2021), "Development of a Micro-ice Production Apparatus and NIR Spectral Measurements of Frosted Minerals for Future Lunar Ice Exploration Missions", Icarus, Vol. 357, pp.1-8. https://doi.org/10.1016/j.icarus.2020.114273
  14. Ryu, B. H., Baek, Y., Kim, Y. S., and Chang, I. (2015), "Basic Study for a Korean Lunar Simulant (KLS-1) Development", J. of the Korean Geotechnical Society, Vol.31, No.7, pp.53-63. https://doi.org/10.7843/kgs.2015.31.7.53
  15. Ryu, B. H., Wang, C, C., and Chang, I. (2018), "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", Journal of Aerospace Engineering, Vol.31, No.1, pp.1-11 https://doi.org/10.1061/(ASCE)AS.1943-5525.0000798
  16. Thomson, B. J., Bussey, D. B. J., Neish, C. D., Cahill, J. T. S., Heggy, E., Kirk, R. L., Patterson, G. W., Raney, R. K., Spudis, P. D., Thompson, T. W., and Ustinov, E. A. (2012), "An Upper Limit for Ice in Shackleton Crater as Revealed by LRO Mini-RF Orbital Radar", Geophysical Research Letters, Vol.39, L14201, pp.1-4.  https://doi.org/10.1029/2012GL052119