DOI QR코드

DOI QR Code

Fracture Toughness Prediction of API X52 Using Small Punch Test Data in Hydrogen at Low Temperatures

소형펀치 시험을 이용한 API X52 저온 수소환경 파괴인성 예측

  • Jae Yoon Kim ;
  • Ki Wan Seo ;
  • Yun Jae Kim ;
  • Ki Seok Kim
  • 김재윤 (고려대학교 기계공학부) ;
  • 서기완 (고려대학교 기계공학부) ;
  • 김윤재 (고려대학교 기계공학부) ;
  • 김기석 (POSCO 철강솔루션연구소)
  • Received : 2023.11.17
  • Accepted : 2023.12.18
  • Published : 2023.12.30

Abstract

Hydrogen embrittlement of a pipe is an important factor in hydrogen transport. To characterize hydrogen embrittlement, tensile and fracture toughness tests should be conducted. However, in the case of hydrogen-embrittled materials, it is difficult to perform tests in hydrogen environment, particularly at low temperatures. It would be useful to develop a methodology to predict the fracture toughness of hydrogen-embrittled materials at low temperatures using more efficient tests. In this study, the fracture toughness of API X52 steels in hydrogen at low temperatures is predicted from numerical simulation using coupled finite element (FE) damage analyses with FE diffusion analysis, calibrated by analyzing small punch test data.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2023-00245737)

References

  1. Ball, M., and Wietschel, M., 2009, "The future of hydrogen-opportunities and challenges," Int. J. Hydrogen. Energ., Vol. 34, No. 2, pp. 615-627.
  2. Anand, L., Mao, Y., and Talamini, B., 2019, "On modeling fracture of ferritic steels due to hydrogen embrittlement," J. Mech. Phys. Solids., Vol. 122, pp. 280-314.
  3. Cialone, H. J., and Holbrook, J. H., 1988, "Sensitivity of steels to degradation in gaseous hydrogen," USA: ASTM International, Philadelphia, PA, pp. 134-152.
  4. Song, J., and Curtin, W. A., 2011, "A nanoscale mechanism of hydrogen embrittlement in metals," Acta. Mater., Vol. 59, No. 4, pp. 1557-1569.
  5. Whiteman, G., Hope, C., and Wadhams, P., 2013, "Vast costs of Arctic change," Nature, Vol. 499, pp. 401-403.
  6. Fassina, P., Bolzoni, Fumagalli, G., Lazzari, L., Vergani, and Sciuccati, A., 2012, "Influence of hydrogen and low temperature on mechanical behaviour of two pipeline steels," Eng. Fract. Mech., Vol. 81, pp. 43-55.
  7. Fassina, P., Brunella, M. F., Lazzari, L., Re, G., Vergani, and Sciuccati, A., 2013, "Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels," Eng. Fract. Mech., Vol. 103, pp. 10-25.
  8. Garcia, T. E., Arroyo, B., Rodriguez, C., Belzunce, F. J., and Alvarez, J. A., 2016, "Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels," Theor. Appl. Fract. Mec., Vol. 86, pp. 89-100.
  9. Shin, H. S., Bae, K. O., Baek, U. B., and Nahm, S. H., 2019, "Establishment of an in-situ small punch test method for characterizing hydrogen embrittlement behaviors under hydrogen gas environments and new influencing factor," Int. J. Hydrogen. Energ., Vol. 44, No. 41, pp. 23472-23483.
  10. Youn, G. G., Kim, Y. J., Kim, J. S., and Lam, P. S., 2021, "A fracture strain based numerical prediction method for hydrogen effect on fracture toughness," Int. J. Mech. Sci., Vol. 202, 106492.
  11. Seo, K. W., Hwang, J. H., Kim, Y. J., Kim, K. S., and Lam, P. S., 2022, "Fracture toughness prediction of hydrogen-embrittled materials using small punch test data in Hydrogen," Int. J. Mech. Sci., Vol. 225, 107371.
  12. BSI, BS 8571, 2014, "Method of test for determination of fracture toughness in metallic materials using single edge notched tension (SENT) specimens," BSI.
  13. ASTM E1820, 2009, "Standard test method for tension testing of metallic materials," In: anuual book of ASTM standard, American society for testing and materials, Philadelphia, USA.
  14. Lee, S. M., Park, S. Y., Baek, U. B., and Choi, B. H., 2023, "Evaluation of the residual fatigue lifetime of a semi-elliptical crack of a Low-Alloy steel pressure vessel under High-Pressure gaseous hydrogen," Int. J. Fatigue., Vol. 176, 107875.
  15. Bae, K. O., Shin, H. S., and Baek, U. B., 2021, "Quantitative evaluation of hydrogen embrittlement susceptibility in various steels for energy use using an in-situ small punch test," Int. J. Hydrogen. Energ., Vol. 46, No. 38, pp. 20107-20118.
  16. Tu, S., Suzuki, S., Yu, Z., and Shibanuma, K., 2022, "Hybrid experimental-numerical strategy for efficiently and accurately identifying post-necking hardening and ductility diagram parameters," Int. J. Mech. Sci., Vol. 219, 107074.
  17. ABAQUS. version 2018, 2018, User's manual, Inc. and Dassault systems.
  18. Kim, J. S., Kim, Y. J., Lee, M. W., Kim, K. S., and Shibanuma, K., 2020, "Fracture simulation model for API X80 charpy test in Ductile Brittle transition temperautre," Int. J. Mech. Sci., Vol. 182, 105771.
  19. Seo, K. W., Kim, Y. J., Hwang, J. H., and Kim, K. S., 2023, "Finite element simulation method for combined Ductile-Brittle fracture of small punch test in hydrogen," Eng. Fract. Mech., Vol. 289, 109489.
  20. Oh, C. S., Kim, Y. J., and Yoon, K. B., 2010, "Coupled analysis of hydrogen transport using ABAQUS," J. Solid. Mech. Mater. Eng., Vol. 4, No. 7, pp. 908-917.
  21. Kim, N. H., Oh, C. S., Kim, Y. J., Yoon, K. B., and Ma, Y. W., 2012, "Hydrogen-assisted stress corrosion cracking simulation using the stress-modified fracture strain model," J. Mech. Sci. Technol., Vol. 26, pp. 2631-2638.