DOI QR코드

DOI QR Code

Estimation of the soil liquefaction potential through the Krill Herd algorithm

  • Yetis Bulent Sonmezer (Department of Civil Engineering, Engineering Faculty, Kirikkale University) ;
  • Ersin Korkmaz (Department of Civil Engineering, Engineering Faculty, Kirikkale University)
  • Received : 2021.08.21
  • Accepted : 2023.04.23
  • Published : 2023.06.10

Abstract

Looking from the past to the present, the earthquakes can be said to be type of disaster with most casualties among natural disasters. Soil liquefaction, which occurs under repeated loads such as earthquakes, plays a major role in these casualties. In this study, analytical equation models were developed to predict the probability of occurrence of soil liquefaction. In this context, the parameters effective in liquefaction were determined out of 170 data sets taken from the real field conditions of past earthquakes, using WEKA decision tree. Linear, Exponential, Power and Quadratic models have been developed based on the identified earthquake and ground parameters using Krill Herd algorithm. The Exponential model, among the models including the magnitude of the earthquake, fine grain ratio, effective stress, standard penetration test impact number and maximum ground acceleration parameters, gave the most successful results in predicting the fields with and without the occurrence of liquefaction. This proposed model enables the researchers to predict the liquefaction potential of the soil in advance according to different earthquake scenarios. In this context, measures can be realized in regions with the high potential of liquefaction and these measures can significantly reduce the casualties in the event of a new earthquake.

Keywords

References

  1. Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
  2. Ardakani, A. and Kohestani, V.R. (2015), "Evaluation of liquefaction potential based on CPT results using C4. 5 decision tree", J. AI Data Min., 3(1), 85-92. http://dx.doi.org/10.5829/idosi.JAIDM.2015.03.01.09
  3. Asteris, P.G., Nozhati, S., Nikoo, M. and Cavaleri, L. (2019), "Krill herd algorithm-based neural network in structural seismic reliability evaluation", Mech. Adv. Mater. Struct., 26(13), 1146-1153. https://doi.org/10.1080/15376494.2018.1430874.
  4. Baziar, M.H. and Jafarian, Y. (2007), "Assessment of liquefaction triggering using strain energy concept and ANN model capacity energy" Soil Dyn. Earthq. Eng., 27(12), 1056-1072. https://doi.org/10.1016/j.soildyn.2007.03.007.
  5. Berrill, J.B. and Davis, R.O. (1985), "Energy dissipation and seismic liquefaction of sands: revised model", Soils Found., 25(2), 106-118. https://doi.org/10.3208/sandf1972.25.2_106.
  6. Bolton Seed, H., Tokimatsu, K., Harder, L.F. and Chung, R.M. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12), 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425).
  7. Cetin, K.O., Seed, R.B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L.F., Kayen, R.E. and Moss, R.E. (2004), "Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential", J. Geotech. Geoenviron. Eng., 130(12), 1314-1340. https://doi.org/10.1061/(ASCE)10900241(2004)130:12(1314).
  8. Cetin, K.O., Seed, R.B., Kayen, R.E., Moss, R.E., Bilge, H.T., Ilgac, M. and Chowdhury, K. (2016), "Summary of SPT based field case history data of cetin (2016) database", METU/GTENG 08/16-01; Middle East Technical University.
  9. Davis, R.O., Berrill, J.B. (1982), "Energy dissipation and seismic liquefaction in sands", Earthq. Eng. Struct. D., 10(1), 59-68. https://doi.org/10.1002/ eqe.4290100105.
  10. Dobry, R., Ladd, R.S., Yokel, F.Y., Chung, R.M. and Powell, D. (1982), Prediction of Pore Water Pressure Buildup and Liquefaction of Sands During Earthquakes by the Cyclic Strain Method, 138(150), Gaithersburg, MD: National Bureau of Standards.
  11. Eseller-Bayat, E., Monkul, M.M, Akin, O. and Yenigun, S. (2019), "The coupled influence of relative density, CSR, plasticity and content of fines on cyclic liquefaction resistance of sands", J. Earthq. Eng., 23(6), 909-929. https://doi.org/10.1080/13632469.2017.1342297.
  12. Fardad, A.P. and Noorzad, R. (2018), "Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing", Soil Dyn. Earthq. Eng., 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026.
  13. Figueroa, J.L., Saada, A.S., Liang, L. and Dahisaria, N.M. (1994), "Evaluation of soil liquefaction by energy principles", J.of Geotechnical Engineering, 120(9), 1554-1569. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1554)
  14. Gandomi, A.H. and Alavi, A.H. (2012), "Krill herd: a new bio-inspired optimization algorithm", Commun. Nonlinear Sci. Numer. Simul., 17(12), 4831-4845. https://doi.org/10.1016/j.cnsns.2012.05.010.
  15. Ghorbani, A. and Eslami, A. (2021), "Energy-based model for predicting liquefaction potential of sandy soils using evolutionary polynomial regression method", Comput. Geotech., 129, 103867.
  16. Green, R.A. (2001), "Energy-based Evaluation and Remediation of Liquefiable Soils", PhD. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg
  17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009), "The WEKA data mining software: an update", ACM SIGKDD explorations newsletter, 11(1), 10-18. https://doi.org/10.1145/1656274.1656278
  18. Hanna, A.M., Ural, D. and Saygili, G. (2007), "Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data", Soil Dyn. Earthq. Eng., 27(6), 521-540. https://doi.org/10.1016/j.soildyn.2006.11.001.
  19. He, L. and Huang, S. (2020), "An efficient krill herd algorithm for color image multilevel thresholding segmentation problem", Appl. Soft Comput., 89, 106063. https://doi.org/10.1016/j.asoc.2020.106063.
  20. Hofmann, E.E., Haskell, A.E., Klinck, J.M. and Lascara, C.M. (2004), "Lagrangian modelling studies of Antarctic krill (Euphausia superba) swarm formation", ICES J. Mar. Sci., 61(4), 617-631. https://doi.org/10.1016/j.icesjms.2004.03.028.
  21. Hoque, M.M., Ansary, M.A. and Yasin, S.J. (2017), "Effects of relative density and effective confining pressure on liquefaction resistance of sands" Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, South Korea, September.
  22. Hu, J.L., Tang, X.W. and Qiu, J.N. (2016), "Assessment of seismic liquefaction potential based on Bayesian network constructed from domain knowledge and history data", Soil Dyn. Earthq. Eng., 89, 49-60. https://doi.org/10.1016/j.soildyn.2016.07.007.
  23. Javdanian, H., Heidari, A. and Kamgar, R. (2017), "Energy-based estimation of soil liquefaction potential using GMDH algorithm", Iranian J. Sci. Tech. T.Civil Eng., 41(3), 283-295. https://doi.org/10.1007/s40996-017-0061-4.
  24. Karthick, P.T. and Palanisamy, C. (2019), "Optimized cluster head selection using krill herd algorithm for wireless sensor network", Automatika: casopis za automatiku, mjerenje, elektroniku, racunarstvo i komunikacije, 60(3), 340-348. https://doi.org/10.1080/00051144.2019.1637174.
  25. Kokusho, T. (2013), "Liquefaction potential evaluation: energy-based method comparedto stress-based method", Proceedings of the 7th International Conference on Case Histories in Geotechnical Engineering, Chicago, USA, April.
  26. Lee, K.L. and Seed, H.B. (1967), "Cyclic stress conditions causing liquefaction of sand", J. Soil Mech. Found. Division, 93(1), 47-70. https://doi.org/10.1061/JSFEAQ.0000945
  27. Mandal, B., Roy, P.K. and Mandal, S. (2014), "Economic load dispatch using krill herd algorithm", Int. J. Elec. Power Energy Syst., 57, 1-10. https://doi.org/10.1016/j.ijepes.2013.11.016.
  28. Monkul, M.M., Kendir, S.B., Tutuncu, Y.E. (2021), "Combined effect of fines content and uniformity coefficient on cyclic liquefaction resistance of silty sands", Soil Dynamics and Earthquake Engineering, 151, 106999 https://doi.org/10.1016/j.soildyn.2021.106999
  29. Muduli, P.K. and Das, S.K. (2014), "Evaluation of liquefaction potential of soil based on standard penetration test using multigene genetic programming model", Acta Geophysica, 62(3), 529-543. https://doi.org/10.2478/s11600-013-0181-6.
  30. Nemat-Nasser S. and Shokooh A. (1979), "A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing", Can. Geotech. J., 16(4), 659-678. https://doi.org/10.1139/t79-076.
  31. Okur, V. and Umu, S.U. (2013), "Energy approach to unsaturated cyclic strength of sand", Bull Earthq. Eng., 11, 503-519. https://doi.org/ 10.1007/s10518-012-9396-1.
  32. Sabbar, A.S., Chegenizadeh, A. and Nikraz, H. (2019), "Prediction of liquefaction susceptibility of clean sandy soils using artificial intelligence techniques", Indian Geotech. J., 49(1), 58-69. https://doi.org/10.1007/s40098-017-0288-9.
  33. Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found. Division, 97(9), 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662.
  34. Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R.M. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12),
  35. Sonmezer Y.B., Akyuz A. and Kayabali K., (2020), "Investigation of the effect of grain size on liquefaction potential of sands", Geomech. Eng., 20(3), 243-254. https://doi.org/10.12989/gae.2020.20.3.243.
  36. Sultana, S. and Roy, P.K. (2016), "Krill herd algorithm for optimal location of distributed generator in radial distribution system", Appl. Soft Comput., 40, 391-404. https://doi.org/10.1016/j.asoc.2015.11.036.
  37. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, USA.
  38. Townsend, J.T. (1971), "Erratum to: Theoretical analysis of an alphabetic confusion matrix", Perception & Psychophysics, 10(4), 256-256. https://doi.org/10.3758/BF03212817.
  39. Trifunac, M. (1995), "Empirical criteria for liquefaction in sands via standard penetration tests and seismic wave energy", Soil Dyn. Earthq. Eng., 14(6), 419-426. https://doi.org/10.1016/0267-7261(95)00016-N.
  40. Whitman, R.V. (1971), "Resistance of soil to liquefaction and settlement", Soils Found., 11(4), 59-68. https://doi.org/10.3208/sandf1960.11.4_59
  41. Xenaki, V.C. and Athanasopoulos, G.A. (2003), "Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines", Soil Dyn. Earthq. Eng., 23(3), 1-12. https://doi.org/10.1016/S0267-7261(02)00210-5.
  42. Xue, X. and Xiao, M. (2016), "Application of genetic algorithm-based support vector machines for prediction of soil liquefaction", Environ. Earth Sci., 75(10), 874. https://doi.org/10.1007/s12665-016-5673-7.
  43. Xue, X. and Yang, X. (2016), "Seismic liquefaction potential assessed by support vector machines approaches", Bull. Eng. Geol. Environ., 75(1), 153-162. https://doi.org/10.1007/s10064-015-0741-x.
  44. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. (2001), "Liquefaction resistance of soils - Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", J. Geotech. Geoenviron. Eng., 127(4), 817-833. http://dx.doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)
  45. Zhang, W. and Goh, A.T.C. (2016), "Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression", Geomech. Eng., 10(3), 269-284. https://doi.org/10.12989/gae.2016.10.3.269.