DOI QR코드

DOI QR Code

지형정보를 이용한 유효토심 분류방법비교

Comparison of Effective Soil Depth Classification Methods Using Topographic Information

  • Byung-Soo Kim (Dept. of Civil and Environmental Engineering, Korea Maritime and Ocean Univ.) ;
  • Ju-Sung Choi (Dept. of Civil and Environmental Engineering, Korea Maritime and Ocean Univ.) ;
  • Ja-Kyung Lee (Dept. of Civil and Environmental Engineering, Korea Maritime and Ocean Univ.) ;
  • Na-Young Jung (Dept. of Civil and Environmental Engineering, Korea Maritime and Ocean Univ.) ;
  • Tae-Hyung Kim (Dept. of Civil Engineering, Korea Maritime and Ocean Univ.)
  • 투고 : 2023.03.16
  • 심사 : 2023.04.17
  • 발행 : 2023.06.30

초록

국내외적으로 다양한 산사태 발생원인 분석과 취약지역의 예측이 이루어지고 있다. 본 연구에서는 산사태에서 발생하는 재해의 분석 및 예측에 사용되는 많은 특성 중 필수적인 요소인 유효토심을 지형정보를 이용해 예측했다. 지형정보 데이터를 각 기관별로 획득한 후 100m × 100m의 격자에 속성정보로 할당하고 데이터 등급화를 통해 차원을 축소 시켜주었다. 분류기준으로 3개 깊이(얕음, 보통, 깊음)와 5개 깊이(매우 얕음, 얕음, 보통, 깊음, 아주 깊음)의 두 가지 경우에 대해 유효토심을 예측했다. K-최근접 이웃, 랜덤 포레스트, 심층인공신경망 모델을 통해 예측하고 정확도, 정밀도, 재현율, F1-점수를 계산해 그 성능을 비교했다. 예측결과 모델에 따라 50% 후반에서 70% 초반의 성능을 보였다. 3개 분류기준의 정확도가 5개 분류기준의 정확도보다 5% 정도 높았다. 본 연구에서 제시한 등급화 기준과 분류모델의 성능은 아직 미흡하지만 유효토심의 예측에 있어서 분류모델의 적용이 가능하다고 판단된다. 큰 지역을 획일적으로 가정하여 사용하는 현재의 유효토심보다 신뢰성 있는 값의 예측이 가능하다고 사료된다.

Research on the causes of landslides and prediction of vulnerable areas is being conducted globally. This study aims to predict the effective soil depth, a critical element in analyzing and forecasting landslide disasters, using topographic information. Topographic data from various institutions were collected and assigned as attribute information to a 100 m × 100 m grid, which was then reduced through data grading. The study predicted effective soil depth for two cases: three depths (shallow, normal, deep) and five depths (very shallow, shallow, normal, deep, very deep). Three classification models, including K-Nearest Neighbor, Random Forest, and Deep Artificial Neural Network, were used, and their performance was evaluated by calculating accuracy, precision, recall, and F1-score. Results showed that the performance was in the high 50% to early 70% range, with the accuracy of the three classification criteria being about 5% higher than the five criteria. Although the grading criteria and classification model's performance presented in this study are still insufficient, the application of the classification model is possible in predicting the effective soil depth. This study suggests the possibility of predicting more reliable values than the current effective soil depth, which assumes a large area uniformly.

키워드

참고문헌

  1. Bourennane, H., King, D. and Couturier, A. (2000), "Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities", Geoderma, Vol.97, pp.255-271 https://doi.org/10.1016/S0016-7061(00)00042-2
  2. Breiman, L. (2001), "Random Forests", Machine Learning, Vol.45, pp.5-32, https://doi.org/10.1023/A:1010933404324.
  3. Chan, H. C., Chang, C. C., Chen, P. A. and Lee, J. T. (2019), "Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan", Catena, Vol.176, pp.419-429. https://doi.org/10.1016/j.catena.2019.01.030
  4. Choi, E. -K., Kim, S. -W., Lee, Y. -C., Lee, K. -H. and Kim, I. -S. (2013), "Analyzing the Disaster Vulnerability of Mt. Baekdusan Area Using Terrain Factors", Journal of the Korean Earth Science Society, https://doi.org/10.5467/jkess.2013.34.7.605.
  5. Choi, E. -K., Kim, S. -W., Cho, J. -W. and Lee, J. -H. (2017), "GIS-based Subsidence Hazard Map in Urban Area", Journal of the Korean Geotechnical Society, Vol.33, No.10, pp.5-14.
  6. Chun, C., Choi, C. and Cho, J. (2019), "Comparison of Ordinary Kriging and Artificial Neural Network for Estimation of Ground Profile Information in Unboring Region", Journal of the Korean GEO-Environmental Society, Vol.20, No.3, pp.15-20.
  7. Costa-Cabral, M. and Burges, S. T. (1994), "Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas", Water Resources Research, Vol.30, pp.1681-1692. https://doi.org/10.1029/93WR03512
  8. Everitt, B. S., Landau, S., Leese, M. and Stahl, D. (2011), "Miscellaneous Clustering Methods, in Cluster Analysis", 5th Edition, John Wiley & Sons, Ltd, Chichester, UK.
  9. Ho, J. -Y., Lee, K. T., Chang, T. -C., Wang, Z. -Y. and Lian, Y.-H. (2012), "Influence of spatial distribution of soil thickness on shallow landslide prediction", Engineering Geology, Vol.124, pp.38-46. https://doi.org/10.1016/j.enggeo.2011.09.013
  10. Karlsson, C. S. J., Jamali, I. A., Earon, R., Olofsson, B. and Mortberg, U. (2014), "Comparison of methods for predicting regolith thickness in previously glaciated terrain, Stockholm", Geoderma, 226-227, pp.116-129. https://doi.org/10.1016/j.geoderma.2014.03.003
  11. Kim, H. -S., Moon, S. -W. a nd Seo, Y. -S. (2022), "Ana lysis of Factors Influencing Landslide Occurrence along a Forest Road Near Sangsan Village", The Journal of Engineering Geology, Vol.32, No.1, pp.73-83.
  12. Kim, J. and Shin, H. (2016), "Slope Stability Assessment on a Landslide Risk Area in Ulsan During Rainfall", Journal of the Korean Geotechnical Society, Vol.32, No.6, pp.27-40. https://doi.org/10.7843/kgs.2016.32.6.27
  13. Kim, M. S., Onda, Y., Uchida, T. and Kim, J. W. (2016), "Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope", Geomorphology, Vol.271, pp.40-54. https://doi.org/10.1016/j.geomorph.2016.07.031
  14. Kingma, D. P. and Ba, J. L. (2015), "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION", International Conference on Learning Representations.
  15. Kuriakose, S. K., Devkota, S., Rossiter, D. G. and Jetten, V. G. (2009), "Prediction of soil depth using environmental variables in an anthropogenic landscape", A Case Study in the Western Ghats of Kerala, India, Catena, Vol.79, pp.27-38. https://doi.org/10.1016/j.catena.2009.05.005
  16. Lee, S. W., Kim, G., Yune, C. -Y., Ryu, H. -J., and Hong, S. J. (2012), "Development of Landslide-Risk Prediction Model thorough Database Construction", Journal of the Korean Geotechnical Society, Vol.28, No.4, pp.23-33. https://doi.org/10.7843/kgs.2012.28.4.23
  17. Min, D. -H. and Yoon, H . -K. (2018), "Method for Establishment of High Reliable Soil Depth Modeling", J. KoreanSoc. Hazard Mitig., Vol.18, No.2, pp.307-315. https://doi.org/10.9798/KOSHAM.2018.18.2.307
  18. Penizek, V. and Boruvka, L. (2006), "Soil depth prediction supported by primary terrain attributes: a comparison of methods", Plant and Soil Environment, Vol.52.
  19. Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J. and Seung, H. S. (2000), "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit", Nature, Vol.405, No.6789, pp.947-951. https://doi.org/10.1038/35016072