References
- Angelini C and Vidakovic B (2004). Gama-Minimax wavelet shrinkage: A robust incorporation of information about energy of a signal in denoising applications, Statistica Sinica, 14, 103-125.
- Bande MF and de la Fuente MO (2012). Statistical computing in functional data analysis: The R-package fda.usc., Journal of Statistical Software, 51, 1-28.
- Brereton RG (2003). Chemometrics: Data Analysis for the Laboratory and Chemical Plant, John Wiley and Sons, Chichester.
- Brown PJ, Vannucci M, and Fearn T (1998a). Bayesian wavelength selection in multicomponent analysis, Journal of Chemometrics, 12, 173-182. https://doi.org/10.1002/(SICI)1099-128X(199805/06)12:3<173::AID-CEM505>3.0.CO;2-0
- Brown PJ, Vannucci M, and Fearn T (1998b). Multivariate Bayesian variable selection and prediction, Journal of the Royal Statistical Society, Series B, 60, 627-641. https://doi.org/10.1111/1467-9868.00144
- Brown PJ, Vannucci M, and Fearn T (2001). Bayesian wavelet regression on curves with application to a spectroscopic calibration problem, Journal of the American Statistical Association, 96, 398-408. https://doi.org/10.1198/016214501753168118
- Cowe IA and McNicol JW (1985). The use of principal components in the analysis of near-infrared spectra, Applied Spectroscopy, 39, 257-266. https://doi.org/10.1366/0003702854248944
- Cutillo L, Jung YY, Ruggeri F, and Vidakovic B (2008). Larger posterior mode wavelet thresholding and applications, Journal of Statistical Planning and Inference, 138, 3758-3773. https://doi.org/10.1016/j.jspi.2007.12.015
- Dias R, Garcia NL, and Martarelli A (2009). Non-Parametric estimation for aggregated functional data for electric load monitoring, Environmetrics, 20, 111-130. https://doi.org/10.1002/env.914
- Dias R, Garcia NL, and Schmidt A (2013). A hierarchical model for aggregated functional data, Technometrics, 55, 321.
- Donoho DL (1993a). Nonlinear wavelet methods of recovery for signals, densities, and spectra from indirect and noisy data, Proceedings of Symposia in Applied Mathematics, volume 47, American Mathematical Society, Providence: Rhode Island.
- Donoho DL (1993b). Unconditional bases are optimal bases for data compression and statistical estimation, Applied and Computational Harmonic Analysis, 1, 100-115. https://doi.org/10.1006/acha.1993.1008
- Donoho DL (1995a). De-Noising by soft-thresholding, IEEE Transactions on Information Theory, 41, 613-627. https://doi.org/10.1109/18.382009
- Donoho DL (1995b). Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition, Applied and Computational Harmonic Analysis, 2, 101-126. https://doi.org/10.1006/acha.1995.1008
- Donoho DL and Johnstone IM (1994a). Ideal denoising in an orthonormal basis chosen from a library of bases, Comptes Rendus-Academie des Sciences Paris Serie, 319, 1317-1322.
- Donoho DL and Johnstone IM, (1994b). Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 425-455. https://doi.org/10.1093/biomet/81.3.425
- Donoho DL and Johnstone IM (1995). Adapting to unknown smoothness via wavelet shrinkage, Journal of the American Statistical Association, 90, 1200-1224. https://doi.org/10.1080/01621459.1995.10476626
- Figueiredo MAT and Nowak RD (2001). Wavelet-Based image estimation: An empirical Bayes approach using Jeffrey's noninformative prior, IEEE Transactions on Image Processing, 10, 1322-1331. https://doi.org/10.1109/83.941856
- Goepp V, Bouaziz O, and Nuel G (2018). Spline Regression with Automatic Knot Selection, Available from: arXiv: 1808.01770v1
- Ruppert D, Wand M, and Carroll RJ (2003). Semiparametric Regression, Cambridge University Press, Cambridge.
- Sousa ARS (2020). Bayesian wavelet shrinkage with logistic prior, Communications in Statistics: Simulation and Computation, 51, 4700-4714, Available from: http://doi:10.1080/03610918.2020.1747076
- Sousa ARS, Garcia NL, and Vidakovic B (2020). Bayesian wavelet shrinkage with beta prior, Computational Statistics, 36, 1341-1363. https://doi.org/10.1007/s00180-020-01048-1
- Sousa ARS (2022). A wavelet-based method in aggregated functional data analysis, arXiv preprint [stat.ME], Available from: arXiv:2205.15969v1
- Vidakovic B (1999). Statistical Modeling by Wavelets, Wiley, New York.
- Vidakovic B and Ruggeri F (2001). BAMS method: Theory and simulations, Sankhya: The Indian Journal of Statistics, Series B, 63, 234-249.
- Wand MP (2000). A comparison of regression spline smoothing procedures, Computational Statistics, 15, 443-462. https://doi.org/10.1007/s001800000047
- Wold S, Martens H, and Wold H (1983). The multivariate calibration problem in chemistry solved by PLS. In A Ruhe and B Kagstrom (Eds), Matrix Pencils, (pp. 286-293), Springer, Heidelberg.