DOI QR코드

DOI QR Code

Identification and Characterization of Diplodia parva and Diplodia crataegicola Causing Black Rot of Chinese Quince

  • Sungmun Kwon (Department of Plant Medicals, Andong National University) ;
  • Jungyeon Kim (Department of Plant Medicals, Andong National University) ;
  • Younmi Lee (Department of Plant Medicals, Andong National University) ;
  • Kotnala Balaraju (Agricultural Science & Technology Research Institute, Andong National University) ;
  • Yongho Jeon (Department of Plant Medicals, Andong National University)
  • 투고 : 2023.03.09
  • 심사 : 2023.05.04
  • 발행 : 2023.06.01

초록

Fungal isolates from infected Chinese quince trees were found to cause black rot in Yeongcheon, Gyeongsangbuk Province, Korea. The quince leaves withered and turned reddish-brown and fruits underwent black mummification. To elucidate the cause of these symptoms, the pathogen was isolated from infected leaf and fruit tissues on potato dextrose agar and Levan media. Several fungal colonies forming a fluffy white or dark gray mycelium and two types of fungi forming an aerial white mycelium, growing widely at the edges, were isolated. Microscopic observations, investigation of fungal growth characteristics on various media, and molecular identification using an internal transcribed spacer, β-tubulin, and translation elongation factor 1-α genes were performed. The fungal pathogens were identified as Diplodia parva and Diplodia crataegicola. Pathogenicity tests revealed that the pathogen-inoculated fruits exhibited a layered pattern, turning brown rotting; leaves showed circular brown necrotic lesions. The developed symptoms were similar to those observed in the field. Fungal pathogens were reisolated to fulfill Koch's postulates. Apples were inoculated with fungal pathogens to investigate the host range. Strong pathogenicity was evident in the fruits, with browning and rotting symptoms 3 days after inoculation. To determine pathogen control, a fungicidal sensitivity test was conducted using four registered fungicides. Thiophanate-methyl, propineb, and tebuconazole inhibited the mycelial growth of pathogens. To the best of our knowledge, this is the first report on the isolation and identification of the fungal pathogens D. parva and D. crataegicola from infected fruits and leaves of Chinese quince, causing black rot disease in Korea.

키워드

과제정보

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Technology Commercialization Support Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (122039-02).

참고문헌

  1. Adamson, K., Laas, M., Blumenstein, K., Busskamp, J., Langer, G. J., Klavina, D., Kaur, A., Maaten, T., Mullett, M. S., Muller, M. M., Ondruskova, E., Padari, A., Enn Pilt, E., Riit, T., Solheim, H., Soonvald, L., Tedersoo, L., Terhonen, E. and Drenkhan, R. 2021. Highly clonal structure and abundance of one haplotype characterise the Diplodia sapinea populations in Europe and Western Asia. J. Fungi 7:634.
  2. Alesiani, D., Canini, A., D'Abrosca, B., DellaGreca, M., Fiorentino, A., Mastellone, C., Monaco, P. and Pacifico, S. 2010. Antioxidant and antiproliferative activities of phytochemicals from quince (Cydonia vulgaris) peels. Food Chem. 118:199-207. https://doi.org/10.1016/j.foodchem.2009.04.098
  3. Ali, M. E., Hudson, O., Hemphill, W. H., Brenneman, T. B. and Oliver, J. E. 2019. First report of resistance to pyraclostrobin, boscalid, and thiophanate-methyl in Colletotrichum gloeosporioides from blueberry in Georgia. Plant Health Prog. 20:261-262. https://doi.org/10.1094/PHP-08-19-0058-BR
  4. Ariyawansa, H. A., Hyde K. D., Jayasiri, S. C., Buyck B., Chethana K. W. T., Dai D. Q., Dai, Y. C., Daranagama, D. A., Jayawardena, R. S., Lucking, R., Ghobad-Nejhad, M., Niskanen, T., Thambugala, K. M., Voigt, K., Zhao, R. L., Li, G.-J., Doilom, M., Boonmee, S., Yang, Z. L., Cai, Q., Cui, Y.-Y., Bahkali, A. H., Chen, J., Cui, B. K., Chen, J. J., Dayarathne, M. C., Dissanayake, A. J., Ekanayaka, A. H., Hashimoto, A., Hongsanan, S., Gareth Jones, E. B., Larsson, E., Li, W. J., Li, Q.-R., Liu, J. K., Luo, Z. L., Maharachchikumbura, S. S. N., Mapook, A., McKenzie, E. H. C., Norphanphoun, C., Konta, S., Pang, K. L., Perera, R. H., Phookamsak, R., Phukhamsakda, C., Pinruan, U., Randrianjohany, E., Singtripop, C., Tanaka, K., Tian, C. M., Tibpromma, S., Abdel-Wahab, M. A., Wanasinghe, D. N., Wijayawardene, N. N., Zhang, J.-F., Zhang, H., Abdel-Aziz, F. A., Wedin, M., Westberg, M., Ammirati, J. F., Bulgakov, T. S., Lima, D. X., Callaghan, T. M., Callac, P., Chang, C.-H., Coca, L. F., Dal-Forno, M., Dollhofer, V., Fliegerova, K., Greiner, K., Griffith, G. W., Ho, H.-M., Hofstetter, V., Jeewon, R., Kang, J. C., Wen, T.-C., Kirk, P. M., Kytovuori, I., Lawrey, J. D., Xing, J., Li, H., Liu, Z. Y., Liu, X. Z., Liimatainen, K., Thorsten Lumbsch, H., Matsumura, M., Moncada, B., Nuankaew, S., Parnmen, S., de Azevedo Santiago, A. L. C. M., Sommai, S., Song, Y., de Souza, C. A. F., de Souza-Motta, C. M., Su, H. Y., Suetrong, S., Wang, Y., Wei, S.-F., Wen, T. C., Yuan, H. S., Zhou, L. W., Reblova, M., Fournier, J., Camporesi, E., Luangsa-ard, J. J., Tasanathai, K., Khonsanit, A., Thanakitpipattana, D., Somrithipol, S., Diederich, P., Millanes, A. M., Common, R. S., Stadler, M., Yan, J. Y., Li, X., Lee, H. W., Nguyen, T. T. T., Lee, H. B., Battistin, E., Marsico, O., Vizzini, A., Vila, J., Ercole, E., Eberhardt, U., Simonini, G., Wen, H.-A., Chen, X.-H., Miettinen, O., Spirin, V. and Hernawati. 2015. Fungal diversity notes 111-252: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 75:27-274. https://doi.org/10.1007/s13225-015-0346-5
  5. Arrigoni, E., Oliveira Longa, C. M., Angeli, D., Soini, M., Pertot, I. and Perazzolli, M. 2019. A fast and reliable method for Diplodia seriata inoculation of trunks and assessment of fungicide efficacy on potted apple plants under greenhouse conditions. Phytopathol. Mediterr. 58:163-173.
  6. Banas, A. and Korus, A. 2016. Health-promoting qualities of Japanese quince fruit (Chaenomeles japonica). Med. Rodz. 2:83-85.
  7. Baranowska-Bosiacka, I., Bosiacka, B., Rast, J., Gutowska, I., Wolska, J., Rebacz-Maron, Debia, K., Janda, K., Korbecki, J. and Chlubek, D. 2017. Macro- and microelement content and other properties of Chaenomeles japonica L. fruit and protective effects of its aqueous extract on hepatocyte metabolism. Biol. Trace Element Res. 178:327-337. https://doi.org/10.1007/s12011-017-0931-4
  8. Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553-556. https://doi.org/10.1080/00275514.1999.12061051
  9. Cerioni, L., Bennasar, P. B., Lazarte, D., Sepulveda, M., Smilanick, J. L., Ramallo, J. and Rapisarda, V. A. 2017. Conventional and reduced-risk fungicides to control postharvest Diplodia and Phomopsis stem-end rot on lemons. Sci. Hortic. 225:783-787. https://doi.org/10.1016/j.scienta.2017.08.008
  10. Chen, X. R., Huang, S. X., Wang, H., Zhang, Y. and Ji, Z. L. 2019. First report of Botrytis cinerea causing leaf spot of Chinese quince in China. Plant Dis. 103:1027.
  11. Chun, J. M., Nho, K. J., Lee, A. Y., Moon, B. C., Park, J. Y. and Kim, H. K. 2012. A methanol fraction from Chaenomeles sinensis inhibits hepatocellular carcinoma growth in vitro and in vivo. J. Korean Soc. Appl. Biol. Chem. 55:335-341. https://doi.org/10.1007/s13765-012-1043-7
  12. Crous, P. W., Slippers, B., Wingfield, M. J., Rheeder, J., Marasas, W. F. O., Phillips. A. J. L., Alves, A., Burgess, T., Barber, P. and Groenewald, J. Z. 2006. Phylogenetic lineages in the Botryosphaeriaceae. Stud. Mycol. 55:235-253. https://doi.org/10.3114/sim.55.1.235
  13. De Wet, J., Burgess, T., Slippers, B., Preisig O., Wingfield, B. D. and Wingfield, M. J. 2003. Multiple gene genealogies and microsatellite markers reflect relationships between morphotypes of Sphaeropsis sapinea and distinguish a new species of Diplodia. Mycol. Res. 107: 557-566. https://doi.org/10.1017/S0953756203007706
  14. Delgado-Cerrone, L., Mondino-Hintz, P. and Alaniz-Ferro, S. 2016. Botryosphariaceae species associated with stem canker, die-back and fruit rot on apple in Uruguay. Eur. J. Plant Pathol. 146:637-655. https://doi.org/10.1007/s10658-016-0949-z
  15. Dissanayake, A. J., Phillips, A. J. L., Li, X. H. and Hyde, K. D. 2016. Botryosphaeriaceae: current status of genera and species. Mycosphere 7:1001-1073. https://doi.org/10.5943/mycosphere/si/1b/13
  16. Epstein, L., Sukhwinder, K. and Vander Gheynst, J. S. 2008. Botryosphaeria-related dieback and control investigated in noncoastal California grapevines. California Agric. 62:161-166. https://doi.org/10.3733/ca.v062n04p161
  17. Farr, D. F. and Rossman, A. Y. 2017. Fungal databases, US national fungus collections. Agricultural Research Service United States, Department of Agriculture. URL https://nt.arsgrin.gov/fungaldatabases/ [18 October 2021].
  18. Farr, D. F. and Rossman, A. Y. 2020. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. URL https://nt.arsgrin.gov/fungaldatabases/ [3 February 2023].
  19. Fernandez-Ortuno, D., Chen, F. and Schnabel, G. 2012. Resistance to pyraclostrobin and boscalid in Botrytis cinerea isolates from strawberry fields in the Carolinas. Plant Dis. 96:1198-1203. https://doi.org/10.1094/PDIS-12-11-1049-RE
  20. Giambra, S., Piazza, G., Alves, A., Mondello, V., Berbegal, M., Armengol, J. and Burruano, S. 2016. Botryosphaeriaceae species associated with diseased loquat trees in Italy and description of Diplodia rosacearum sp. nov. Mycosphere 7:978-989. https://doi.org/10.5943/mycosphere/si/1b/9
  21. Hamauzu, Y., Yasui, H., Inno, T., Kume, C. and Omanyda, M. 2005. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J. Agric. Food Chem. 53:928-934. https://doi.org/10.1021/jf0494635
  22. Hanan, E., Sharma, V. and Ahmad, F. J. 2020. Nutritional composition, phytochemistry and medicinal use of quince (Cydonia oblonga Miller) with emphasis on its processed and fortified food products. J. Food Process. Technol. 11:831.
  23. He, R., Yang, Y., Hu, Z., Xue, R. and Hu, Y. 2021. Resistance mechanisms and fitness of pyraclostrobin-resistant isolates of Lasiodiplodia theobromae from mango orchards. PLoS ONE 16:e0253659.
  24. Hlaiem, S., Boutiti, M. Z. and Jamaa, M. L. B. 2020. First report of Diplodia seriata causing dieback on Quercus coccifera in Tunisia. J. Plant Pathol. 102:975-976. https://doi.org/10.1007/s42161-020-00539-w
  25. Isa, D. A. and Kim, H. T. 2022. Cytochrome b gene-based assay for monitoring the resistance of Colletotrichum spp. to pyraclostrobin. Plant Pathol. J. 38:616-628. https://doi.org/10.5423/PPJ.OA.06.2022.0081
  26. Kazerooni, E. A., Maharachchikumbura, S. S. N., Kang, S.-M. and Lee, I.-J. 2020. First report of Didymosphaeria rubi-ulmifolii brown spot infection of Chinese quince fruit in South Korea. Plant Dis. 105:1195.
  27. Kazerooni, E. A., Maharachchikumbura, S. S. N., Kang, S.-M. and Lee, I.-J. 2021. First report of fruit canker caused by Nothophoma quercina on Chinese quince in South Korea. Plant Dis. 105:3760.
  28. Kiiker, R., Juurik, M. and Mae, A. 2021. Fungicide resistance evolving in Ramularia collo-cygni population in Estonia. Microorganisms 9:1514.
  29. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  30. Kunova, A., Pizzatti, C., Saracchi, M., Pasquali, M. and Cortesi, P. 2021. Grapevine powdery mildew: fungicides for its management and advances in molecular detection of markers associated with resistance. Microorganisms 9:1541.
  31. Laureiro, L., Gimenez, J. and Balatti, A. 2009. Estado actual y perspectivas de la produccion e industrializacion' del membrillo en Uruguay [Current status and perspectives of the production and industrialization of quince in Uruguay]. MSc. thesis. University of the Republic Uruguay, Montevideo, Uruguay. 184
  32. Lee, S.-Y., Ten, L. N., Ayim, B. Y., Fulbert, O. N., Das, K. and Jung, H.-Y. 2021. Diplodia parva sp. nov., a novel species of the family Botryosphaeriaceae isolated from soil in Korea. Phytotaxa 514:105-117. https://doi.org/10.11646/phytotaxa.514.2.2
  33. Lynch, S. C., Eskalen, A., Zambino, P. and Scott, T. 2010. First report of bot canker caused by Diplodia corticola on coast live oak (Quercus agrifolia) in California. Plant Dis. 94:1510.
  34. Martinez-Diz, M. P., Diaz-Losada, E., Diaz-Fernandez, A., Bouzas-Cid, Y. and Gramaje, D. 2021. Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop Prot. 143:105465.
  35. Mehl, J. M. W., Slippers, B., Roux, J. and Wingfield, M. J. 2011. Botryosphaeriaceae associated with Pterocarpus angolensis (kiaat) in South Africa. Mycologia 103:534-553. https://doi.org/10.3852/10-003
  36. Mierina, I., Serzane, R., Strele, M., Moskaluka, J., Seglina, D. and Jure, M. 2011. Extracts of Japanese quince seeds: potential source of antioxidants. In: 6th Baltic Conference on Food Science and Technology FOODBALT-2011. Innovations for Food Science and Production, ed. by E. Straumite, pp. 98-103. Latvia University of Agriculture, Faculty of Food Technology, Jelgava, Latvia.
  37. Myung, I.-S., Yun, M.-J., Lee, Y.-H., Kim, G.-D. and Lee, Y.-K. 2016. First report of fire blight caused by Erwinia amylovora on Chinese quince in South Korea. Plant Dis. 100:2521.
  38. Nahorska, A., Dzwoniarska, M. and Thiem, B. 2014. Fruits of Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) as a source of bioactive compounds. Postepy Fitoter. 4:239-246.
  39. Norin, I. and Rumpunen, K. 2003. Pathogens on Japanese quince (Chaenomeles japonica) plants. In: Japanese quince: potential fruit crop for Northern Europe, ed. by K. Rumpunen, pp. 37-58. Department of Crop Science, Swedish University of Agricultural Sciences, Alnarp, Sweden.
  40. O'Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7:103-116. https://doi.org/10.1006/mpev.1996.0376
  41. Perez, C. A., Wingfield, M. J., Slippers, B., Altier N. A. and Blanchette R. A. 2010. Endophytic and canker-associated Botryosphaeriaceae occurring on non-native Eucalyptus and native Myrtaceae trees in Uruguay. Fungal Divers. 41:53-69. https://doi.org/10.1007/s13225-009-0014-8
  42. Phillips, A. J. L., Lopes, L., Abdollahzadeh, J., Bobev, S. and Alves, A. 2012. Resolving the Diplodia complex on apple and other Rosaceae hosts. Persoonia 29:29-38. https://doi.org/10.3767/003158512X658899
  43. Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., Groenewald, J. Z. and Crous, P. W. 2013. The Botryosphaeriaceae: genera and species known from culture. Stud. Mycol. 76:51-167. https://doi.org/10.3114/sim0021
  44. Phillips, A. J. L., Crous, P. W. and Alves, A. 2007. Diplodia seriata, the anamorph of Botryosphaeria obtusa. Fungal Divers. 25:141-155.
  45. Sawai, R., Kuroda, K., Shibata, T., Gomyou, R., Osawa, K. and Shimizu, K. 2008. Anti-influenza virus activity of Chaenomeles sinensis. J. Ethnopharmacol. 118:108-112. https://doi.org/10.1016/j.jep.2008.03.013
  46. Slippers, B., Smit, W. A., Crous, P. W., Coutinho, T. A., Wingfield, B. D. and Wingfield, M. J. 2007. Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. Plant Pathol. 56:128-139. https://doi.org/10.1111/j.1365-3059.2006.01486.x
  47. Slippers, B. and Wingfield, M. J., 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol. Rev. 21:90-106. https://doi.org/10.1016/j.fbr.2007.06.002
  48. Vuckovic, N., Vico, I., Duduk B. and Duduk, N. 2022. Diversity of Botryosphaeriaceae and Diaporthe species associated with postharvest apple fruit decay in Serbia. Phytopathology 112:929-943. https://doi.org/10.1094/PHYTO-07-21-0304-R
  49. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, San Diego, CA, USA.
  50. Zlatkovic, M., Keca, N., Wingfield, M. J., Jami, F. and Slippers, B. 2016. Shot hole disease on Prunus laurocerasus caused by Neofusicoccum parvum in Serbia. For. Pathol. 46:666-669. https://doi.org/10.1111/efp.12300