DOI QR코드

DOI QR Code

Variations in Kiwifruit Microbiota across Cultivars and Tissues during Developmental Stages

  • Su-Hyeon Kim (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University) ;
  • Da-Ran Kim (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University) ;
  • Youn-Sig Kwak (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University)
  • 투고 : 2023.03.07
  • 심사 : 2023.04.16
  • 발행 : 2023.06.01

초록

The plant microbiota plays a crucial role in promoting plant health by facilitating the nutrient acquisition, abiotic stress tolerance, biotic stress resilience, and host immune regulation. Despite decades of research efforts, the precise relationship and function between plants and microorganisms remain unclear. Kiwifruit (Actinidia spp.) is a widely cultivated horticultural crop known for its high vitamin C, potassium, and phytochemical content. In this study, we investigated the microbial communities of kiwifruit across different cultivars (cvs. Deliwoong and Sweetgold) and tissues at various developmental stages. Our results showed that the microbiota community similarity was confirmed between the cultivars using principal coordinates analysis. Network analysis using both degree and eigenvector centrality indicated similar network forms between the cultivars. Furthermore, Streptomycetaceae was identified in the endosphere of cv. Deliwoong by analyzing amplicon sequence variants corresponding to tissues with an eigenvector centrality value of 0.6 or higher. Our findings provide a foundation for maintaining kiwifruit health through the analysis of its microbial community.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) [2020R1A2C20041777].

참고문헌

  1. Abdelfattah, A., Ruano-Rosa, D., Cacciola, S. O., Li Destri Nicosia, M. G. and Schena, L. 2018. Impact of Bactrocera oleae on the fungal microbiota of ripe olive drupes. PLoS ONE 13:e0199403.
  2. Abdelfattah, A., Tack, A. J. M., Wasserman, B., Liu, J., Berg, G., Norelli, J., Droby, S. and Wisniewski, M. 2022. Evidence for host-microbiome co-evolution in apple. New Phytol. 234:2088-2100. https://doi.org/10.1111/nph.17820
  3. Abdelfattah, A., Wisniewski, M., Schena, L. and Tack, A. J. M. 2021. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ. Microbiol. 23:2199-2214. https://doi.org/10.1111/1462-2920.15392
  4. Adeleke, B. S. and Babalola, O. O. 2021. Roles of plant endosphere microbes in agriculture: a review. J. Plant Growth Regul. 41:1411-1428. https://doi.org/10.1007/s00344-021-10406-2
  5. Berendsen, R. L., Pieterse, C. M. J. and Bakker, P. A. H. M. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478-486. https://doi.org/10.1016/j.tplants.2012.04.001
  6. Bettenfeld, P., Canals, J. C., Jacquens, L., Fernandez, O., Fontaine, F., van Schaik, E., Courty, P.-E. and Trouvelot, S. 2022. The microbiota of the grapevine holobiont: a key component of plant health. J. Adv. Res. 40:1-15. https://doi.org/10.1016/j.jare.2021.12.008
  7. Bonacich, P. and Bailey, K. D. 1971. Key variables. Sociol. Methodol. 3:221-235. https://doi.org/10.2307/270823
  8. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A. and Holmes, S. P. 2015. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581-583.
  9. Chou, M.-Y., Vanden Heuvel, J., Bell, T. H., Panke-Buisse, K. and Kao-Kniffin, J. 2018. Vineyard under-vine floor management alters soil microbial composition, while the fruit microbiome shows no corresponding shifts. Sci. Rep. 8:11039.
  10. Dinno, A. and Dinno, M. A. 2017. Conover-Iman test of multiple comparisons using rank sums. R Foundation for Statistical Computing, Vienna, Austria.
  11. Diskin, S., Feygenberg, O., Maurer, D., Droby, S., Prusky, D. and Alkan, N. 2017. Microbiome alterations are correlated with occurrence of postharvest stem-end rot in mango fruit. Phytobiomes 1:117-127. https://doi.org/10.1094/PBIOMES-05-17-0022-R
  12. Friedman, J. and Alm, E. J. 2012. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8:e1002687.
  13. Graham, J., Marshall, B. and Squire, G. R. 2003. Genetic differentiation over a spatial environmental gradient in wild Rubus ideaus populations. New Phytol. 157:667-675. https://doi.org/10.1046/j.1469-8137.2003.00693.x
  14. Grassi, R., Stefani, S. and Torriero, A. 2007. Some new results on the eigenvector centrality. J. Math. Sociol. 31:237-248. https://doi.org/10.1080/00222500701373251
  15. Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttila, A. M., Compant, S., Campisano, A., Doring, M. and Sessitsch, A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79:293-320. https://doi.org/10.1128/MMBR.00050-14
  16. He, X., and Meghanathan, N. 2016. Correlation of eigenvector centrality to other centrality measures: random, small-world and real-world networks. In: Proceedings of the 8th International Conference on Networks and Communications (NeCoM), CSITEC - 2016, eds. by N. Meghanathan and J. Zizka, pp. 09-18. AIRCC Publishing Corporation, Chennai, India.
  17. Heatherbell, D. A., Struebi, P., Eschenbruch, R. and Withy, L. M. 1980. A new fruit wine from kiwifruit: a wine of unusual composition and Riesling Sylvaner character. Am. J. Enol. Vitic. 31:114-121. https://doi.org/10.5344/ajev.1980.31.2.114
  18. Kaul, S., Choudhary, M., Gupta, S. and Dhar, M. K. 2021. Engineering host microbiome for crop improvement and sustainable agriculture. Front. Microbiol. 12:635917.
  19. Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y.-S. 2019. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802.
  20. Kim, S.-H., Kim, D.-R. and Kwak, Y.-S. 2022. Characteristics of Streptomyces venezuelae 1-1 9D strain against kiwifruit bacterial canker pathogen. Korean J. Pestic. Sci. 26:9-15. https://doi.org/10.7585/kjps.2022.26.1.9
  21. Kruskal, W. H. and Wallis, W. A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47:583-621. https://doi.org/10.1080/01621459.1952.10483441
  22. Kwon, J.-H., Cheon, M.-G., Kim, J. and Kwack, Y.-B. 2011. Black rot of kiwifruit caused by Alternaria alternata in Korea. Plant Pathol. J. 27:298.
  23. McCann, H. C., Rikkerink, E. H. A., Bertels, F., Fiers, M., Lu, A., Rees-George, J., Anderson, M. T., Gleave, A. P., Haubold, B., Wohlers, M. W., Guttman, D. S., Wang, P. W., Straub, C., Vanneste, J., Rainey, P. B. and Templeton, M. D. 2013. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog. 9:e1003503.
  24. Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663. https://doi.org/10.1111/1574-6976.12028
  25. Michailides, T. J. and Elmer, P. A. G. 2000. Botrytis gray mold of kiwifruit caused by Botrytis cinerea in the United States and New Zealand. Plant Dis. 84:208-223. https://doi.org/10.1094/PDIS.2000.84.3.208
  26. Murali, A., Bhargava, A. and Wright, E. S. 2018. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6:140.
  27. Qu, Q., Zhang, Z., Peijnenburg, W. J. G. M., Liu, W., Lu, T., Hu, B., Chen, J., Chen, J., Lin, Z. and Qian, H. 2020. Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 68:5024-5038. https://doi.org/10.1021/acs.jafc.0c00073
  28. Richardson, D. P., Ansell, J. and Drummond, L. N. 2018. The nutritional and health attributes of kiwifruit: a review. Eur. J. Nutr. 57:2659-2676. https://doi.org/10.1007/s00394-018-1627-z
  29. Ruhnau, B. 2000. Eigenvector-centrality: a node-centrality? Soc. Networks 22:357-365. https://doi.org/10.1016/S0378-8733(00)00031-9
  30. Turner, T. R., James, E. K. and Poole, P. S. 2013. The plant microbiome. Genome Biol. 14:209.
  31. Valente, T. W., Coronges, K., Lakon, C. and Costenbader, E. 2008. How correlated are network centrality measures? Connect 28:16-26.
  32. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. and Dufresne, A. 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206:1196-1206. https://doi.org/10.1111/nph.13312
  33. Wang, N. R. and Haney, C. H. 2020. Harnessing the genetic potential of the plant microbiome. Biochemist 42:20-25. https://doi.org/10.1042/BIO20200042