DOI QR코드

DOI QR Code

First-Principles Investigation on the Electromechanical Properties of Monolayer 1H Pb-Dichalcogenides

  • Nguyen Hoang Linh (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Nguyen Minh Son (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Tran The Quang (Department of Basic Engineering, Faculty of Technology, Thai Binh University) ;
  • Nguyen Van Hoi (Department of Mechanical System Engineering, Jeonbuk National University) ;
  • Vuong Thanh (School of Mechanical Engineering, Hanoi University of Science and Technology) ;
  • Do Van Truong (School of Mechanical Engineering, Hanoi University of Science and Technology)
  • Received : 2022.08.03
  • Accepted : 2023.04.04
  • Published : 2023.05.27

Abstract

This study uses first-principles calculations to investigate the mechanical properties and effect of strain on the electronic properties of the 2D material 1H-PbX2 (X: S, Se). Firstly, the stability of the 1H Pb-dichalcogenide structures was evaluated using Born's criteria. The obtained results show that the 1H-PbS2 material possesses the greatest ideal strength of 3.48 N/m, with 3.68 N/m for 1H-PbSe2 in biaxial strain. In addition, 1H-PbS2 and 1H-PbSe2 are direct semiconductors at equilibrium with band gaps of 2.30 eV and 1.90 eV, respectively. The band gap was investigated and remained almost unchanged under the strain εxx but altered significantly at strains εyy and εbia. At the fracture strain in the biaxial direction (19 %), the band gap of 1H-PbS2 decreases about 60 %, and that of 1H-PbSe2 decreases about 50 %. 1H-PbS2 and 1H-PbSe2 can convert from direct to indirect semiconductor under the strain εyy. Our findings reveal that the two structures have significant potential for application in nanoelectronic devices.

Keywords

References

  1. M. Devi and A. Kumar, Mater. Res. Bull., 97, 207 (2018). 
  2. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, Nature, 490, 192 (2012). 
  3. A. L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones and M. Terrones, ACS Nano, 7, 5235 (2013). 
  4. B. Ge, B. Chen and L. Li, Appl. Surf. Sci., 550, 149177 (2021). 
  5. M. S. Sokolikova and C. Mattevi, Chem. Soc. Rev., 49, 3952 (2020). 
  6. V. Van Thanh, N. T. Hung and D. Van Truong, RSC Adv., 8, 38667 (2018). 
  7. M. Isa Khan, A. Majid, N. Ashraf and I. Ullah, Phys. Chem. Chem. Phys., 22, 3304 (2020). 
  8. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernde, J. Tedd, J. Pouzet and J. Salardenne, Sol. Energy Mater. Sol. Cells, 46, 115 (1997).  https://doi.org/10.1016/S0927-0248(96)00096-7
  9. V. K. Sangwan and M. C. Hersam, Annu. Rev. Phys. Chem., 69, 299 (2018). 
  10. M. Y. Qian, Z. L. Yu, Q. Wan, P. B. He, B. Liu, J. L. Yang, C. M. Xu and M. Q. Cai, Phys. Status Solidi RRL, 14, 2000016 (2020). 
  11. T. Kocabas, D. Cakir and C. Sevik, J. Phys.: Condens. Matter, 33, 115705 (2021). 
  12. B. Ul Haq, S. AlFaify, R. Ahmed, A. Laref, Q. Mahmood and E. Algrafy, Appl. Surf. Sci., 525, 146521 (2020). 
  13. W. Jin, J. Pang, L. Yue, M. Xie, X. Kuang and C. Lu, J. Phys. Chem. Lett., 13, 10494 (2022). 
  14. Y. I. Ravich, B. A. Efimova and I. A. Smirnov, Semiconducting Lead Chalcogenides, 1st ed., p.149, Springer, New York (1970). 
  15. J. Xu, S. Lai, M. Hu, S. Ge, R. Xie, F. Li, D. Hua, H. Xu, H. Zhou, R. Wu, J. Fu, Y. Qiu, J. He, C. Li, H. Liu, Y. Liu, J. Sun, X. Liu and J. Luo, Small Methods, 4, 2000567 (2020). 
  16. N. Choudhary, M. A. Islam, J. H. Kim, T.-J. Ko, A. Schropp, L. Hurtado, D. Weitzman, L. Zhai and Y. Jung, Nano Today, 19, 16 (2018). 
  17. M. Morales, R. Clay, C. Pierleoni and D. Ceperley, Entropy, 16, 287 (2013). 
  18. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996). 
  19. P. P. John, B. Kieron and E. Matthias, Phys. Rev. Lett., 77, 3865 (1996). 
  20. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys.: Condens. Matter, 21, 395502 (2009). 
  21. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188 (1976). 
  22. C. G. Broyden, J. Inst. Math. Appl., 6, 76 (1969). 
  23. A. Dal Corso, J. Phys.: Condens. Matter, 28, 075401 (2016). 
  24. V. V. Thanh, D. V. Truong and N. Tuan Hung, Phys. Chem. Chem. Phys., 21, 22377 (2019). 
  25. F. Mouhat and F.-X. Coudert, Phys. Rev. B, 90, 224104 (2014). 
  26. V. V. Tuan, N. H. Nguyen, A. L. A., Y. K. Q., V. L. Chu, I. K. A., V. P. Huynh and V. H. Nguyen, RSC Adv., 12, 7973 (2022). 
  27. V. V. Thanh, N. D. Van, D. V. Truong, R. Saito and N. T. Hung, Appl. Surf. Sci., 526, 146730 (2020). 
  28. Q. Peng, W. Ji and S. De, Comput. Mater. Sci., 56, 11 (2012).