DOI QR코드

DOI QR Code

2-kW plasma power supply design with small frequency fluctuations

  • Received : 2022.12.08
  • Accepted : 2023.03.21
  • Published : 2023.05.20

Abstract

This paper proposes a 2-kW plasma power supply with a small frequency fluctuation. In existing plasma power supplies, when the input voltage is fixed, the frequency fluctuation is large according to the load impedance and output voltage of the plasma discharger, which constitutes a problem. The proposed plasma power supply addresses this problem by generating an output voltage with a small frequency fuctuation according to the load impedance and output voltage change by applying a variable input voltage and a compensation capacitor. The proposed circuit has a two-stage structure comprising a single-phase power factor correction (PFC) boost converter and a high-frequency inverter with a parallel resonant circuit. Accordingly, a prototype plasma power supply with an output voltage of 3-5 kVpk and 2-kW was designed, and its validity was verifed using experimental results obtained from the proposed circuit.

Keywords

Acknowledgement

This work was supported by a Korea Technology and Information Promotion Agency for SMEs(TIPA) grant funded by the Ministry of SMEs and Startups (G21S297024702)

References

  1. Kim, J.-S., Shim, S.-R.: A study on the standard item classifcation system for trade statistics in the Korean semiconductor industry: based on MTI and HS code. J. Korea Res. Soc. Customs 23(2), 79-99 (2022)
  2. Hong, W.-S.: Thin flm vacuum process technology via chemical vapor deposition methods. Vac. Maga. 1(3), 9-13 (2014) https://doi.org/10.5757/vacmag.1.3.9
  3. Kwak, B., Kim, J., K, M.: A Study on High Voltage Power System for Plasma Reaction of Flexible Electrode, Power Electronics Conference, 191-192 (2018)
  4. Abdelsalam, I., Elgenedy, M.A., Ahmed, S., Williams, B.W.: Fullbridge modular multilevel submodule-based high-voltage bipolar pulse generator with low-voltage DC. Input Pulsed Electr. Field Appl. IEEE Trans. Plasma Sci. 45(10), 2857-2864 (2017). https://doi.org/10.1109/TPS.2017.2743822
  5. Amjad, M., Salam, Z.: Analysis, design, and implementation of multiple parallel ozone chambers for high fow rate. IEEE Trans. Industr. Electron. 61(2), 753-765 (2014). https://doi.org/10.1109/TIE.2013.2251733
  6. Jafari, H., Habibi, M.: High-voltage charging power supply based on an lcc-type resonant converter operating at continuous conduction mode. IEEE Trans. Power Electron. 35(5), 5461-5478 (2020). https://doi.org/10.1109/TPEL.2019.2946876
  7. Bonnin, X., Brandelero, J., Videau, N., Piquet, H., Meynard, T.: A high voltage high frequency resonant inverter for supplying DBD devices with short discharge current pulses. IEEE Trans. Power Electron. 29(8), 4261-4269 (2014). https://doi.org/10.1109/TPEL.2013.2295525W
  8. Ding, F.. Li., Yang, L.: Atmospheric-pressure glow discharge sustained by a resonant power supply. IEEE Trans. Plasma Sci. 37(11), 2207-2212 (2009). https://doi.org/10.1109/TPS.2009.2030202
  9. Zhang, C., et al.: A gliding discharge in open air sustained by high-voltage resonant AC power supply. IEEE Trans. Plasma Sci. 40(11), 2843-2849 (2012). https://doi.org/10.1109/TPS.2012.2208470
  10. Alonso, J.M., Garcia, J., Calleja, A.J., Ribas, J., Cardesin, J.: Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallel-resonant pushpull inverter. IEEE Trans. Ind. Appl. 41(5), 1364-1372 (2005). https://doi.org/10.1109/TIA.2005.853379
  11. Lee, W.-C., Lee, T.-K.: The study on reactor parameters of atmosphere plasma power supply. J. Korean Inst. Illum. Electr. Install. Eng. 26(6), 59-65 (2012)
  12. Florez, D., Diez, R., Piquet, H., Hay Harb, A.K.: Square-shape current-mode supply for parametric control of the dbd excilamp power. IEEE Trans. Industr. Electron. 62(3), 1451-1460 (2015). https://doi.org/10.1109/TIE.2014.2361601
  13. Saleh, S.A., Allen, B., Meng, R., Lavigne, T., Colpitts, B.G.: On the employment of 1φ, voltage-source, switch-mode PWM, DC-AC converters for supplying dielectric barrier discharge devices. IEEE Ind. Appl. Soc. Ann. Meet. (2015). https://doi.org/10.1109/IAS.2015.7356803
  14. Noh, H.-K., Lee, J.-K., Kim, M.-J.: A study on reactor capacitance estimation algorithm and 5kw plasma power supply design for linear output control of wide range. Trans. Korean Inst. Power Electr. 21(6), 514-524 (2016) https://doi.org/10.6113/TKPE.2016.21.6.514
  15. Shea, J.J.: Transformer and inductor design handbook, 3rd Ed. [book review]. IEEE Electr. Insul. Mag. 21(1), 61 (2005). https://doi.org/10.1109/MEI.2005.1389284
  16. Kwon, J., Kwon, H., Choi, S., Lee, J., Kim, S.: Design of 20 kW audio power supply for single-phase/three-phase applications. J. Power Electron. 22(6), 1010-1019 (2022). https://doi.org/10.1007/s43236-022-00404-2
  17. Jimenez, H.O.: AC resistance evaluation of foil, round and litz conductors in magnetic components (2013).
  18. Kim, T., Kim, J.-W.: optimal design of a transformer core using DEAS. Trans. Korean Inst. Electr. Eng. 56(6), 1055-1063 (2007)