DOI QR코드

DOI QR Code

Sliding mode control strategy for microgrid inverter systems

  • Liu Yuan (School of Control Science and Engineering, Tiangong University) ;
  • Chunbo Xiu (School of Control Science and Engineering, Tiangong University) ;
  • Xin Ma (School of Control Science and Engineering, Tiangong University)
  • Received : 2022.07.29
  • Accepted : 2022.11.30
  • Published : 2023.05.20

Abstract

To enhance the voltage control performance of the microgrid inverter and reduce the influence of load disturbance, a sliding mode control method based on a new compound reaching law is proposed. The compound reaching law is designed by adding a variable exponential power term into the exponential reaching law, and replacing the switching function by a hyperbolic tangent function to enhance convergence rates of the sliding mode variables and speed up the system response. Based on the adaptive estimation of the load disturbance, an adaptive sliding mode control law is designed to accomplish the voltage control of a microgrid inverter. Simulation results show that the new compound reaching law has a faster convergence speed than existing common reaching laws, and that it can reach the sliding mode surface at a speed of zero. Therefore, the sliding mode control method based on the new compound reaching law can accomplish inverter voltage control and suppress the voltage fluctuation caused by load change.

Keywords

Acknowledgement

This work was supported in part by Tianjin Technology Innovation Guidance Project (Fund) of China under Grant 21YDTPJC00550.

References

  1. Liu, W.Z., Blaabjerg, F., Zhou, D., Chou, S.F.: Modified instantaneous power control with phase compensation and current-limited function under unbalanced grid faults. IEEE J. Emerg. Sel. Topics Power Electron. 9(3), 2896-2906 (2021) https://doi.org/10.1109/JESTPE.2020.2984475
  2. Zhang, X.H., Gao, W.B., Zhong, J.Q.: Decentralized economic dispatching of multi-micro grid considering wind power and photovoltaic output uncertaint. IEEE Access 9, 104093-104103 (2021) https://doi.org/10.1109/ACCESS.2021.3099401
  3. Lou, G.N., Hong, Y.Q., Gu, W.: Distributed event-triggered multi-timer synchronization scheme for secondary control in islanded microgrids. Int. J. Electr. Power Energy Syst. 135, 107511 (2022)
  4. Li, X.L., Xu, Q.W., Blaabjerg, F.: Adaptive resilient secondary control for islanded AC microgrids with sensor faults. IEEE J. Emerg. Sel. Topics Power Electron. 9(5), 5239-5248 (2021) https://doi.org/10.1109/JESTPE.2020.2988509
  5. Wang, B., Verbic, G.: Stability analysis of low-voltage distribution feeders operated as islanded microgrids. IEEE Trans. Smart Grid 12(6), 4681-4689 (2021)
  6. Wu, J., Han, W.Q., Chen, T., Zhao, J.Q., Li, B.B.: Resonance characteristics analysis of grid-connected inverter systems based on sensitivity theory. J. Power Electron. 18(3), 746-756 (2018)
  7. Sharma, S., Verma, A., Panigrahi, B.K.: Robustly coordinated distributed voltage control through residential demand response under multiple uncertainties. IEEE Trans. Ind. Appl. 57(4), 4022-4058 (2021) https://doi.org/10.1109/TIA.2021.3079135
  8. Burgos-meliado, C., Llanos, J.J., Cardenas, R., Saez, D., Olivares, D.E., Sumner, M.: Distributed control strategy based on a consensus algorithm and on the conservative power theory for imbalance and harmonic sharing in 4-wire microgrids. IEEE Trans. Smart Grid 11(2), 1604-1619 (2020) https://doi.org/10.1109/TSG.2019.2941117
  9. Guilherme, F.S., Alejandro, D., Maria, M.S., Aaron, M., Jason, F.: String stability in microgrids using frequency controlled inverter chains. IEEE Control Syst. Lett. 6, 1484-1489 (2022) https://doi.org/10.1109/LCSYS.2021.3114143
  10. Jiang, J.B., Liu, F., Pan, S.Z., Zha, X.M., Liu, W.J., Chen, C., Hao, L.D.: A conservatism-free large signal stability analysis method for DC microgrid based on mixed potential theory. IEEE Trans. Power Electron. 34(11), 11342-11351 (2019) https://doi.org/10.1109/TPEL.2019.2897643
  11. Reshikeshan, S.S.M., Matthiesen, S.L., Illindala, N.S.: Autonomous voltage regulation by distributed PV inverters with minimal inter-node interference. IEEE Trans. Ind. Appl. 57(3), 2058-2066 (2021) https://doi.org/10.1109/TIA.2021.3064911
  12. Li, J., Zhang, D.: Backstepping and sliding-mode techniques applied to distributed secondary control of islanded microgrids. Asian J. Control 20(3), 1288-1295 (2018) https://doi.org/10.1002/asjc.1629
  13. Ge, P.D., Zhu, Y., Green, T.C., Teng, F.: Resilient secondary voltage control of islanded microgrids: an ESKBF-based distributed fast terminal sliding mode control approach. IEEE Trans. Power Syst. 36(2), 1059-1070 (2021) https://doi.org/10.1109/TPWRS.2020.3012026
  14. Jie, F., Chen, G.D., Zhong, Y.F., Zhou, K., Li, J., Song, D.: Sliding mode control method of single-phase inverter with LCL filter. Acta Energ. Sol. Sin. 38(04), 1032-1038 (2017)
  15. Jiang, W., Wu, R.H.: Research on complex dynamic behavior of H-bridge inverter based on power reaching law sliding mode control. J. Vib. Shock 39(10), 7-14+57 (2020)
  16. Pilloni, A., Pisano, A., Usai, E.: Robust finite-time frequency and voltage restoration of inverter-based microgrids via sliding-mode cooperative control. IEEE Trans. Industr. Electron. 65(1), 907-917 (2018) https://doi.org/10.1109/TIE.2017.2726970
  17. Shahab, M.A., Mozafari, B., Soleymani, S., Dehkordi, N.M.: Distributed consensus-based fault tolerant control of islanded microgrids. IEEE Trans. Smart Grid 11(1), 37-47 (2020) https://doi.org/10.1109/TSG.2019.2916727
  18. Chen, L.J., Wang, Y.Y., Lu, X.N., Zheng, T.W., Wang, J.H., Mei, S.W.: Resilient active power sharing in autonomous microgrids using pinning-consensus-based distributed control. IEEE Trans. Smart Grid 10(6), 6802-6811 (2019) https://doi.org/10.1109/TSG.2019.2911344
  19. Guo, L.L., Jin, N., Li, Y.Y.: Sliding mode observer based AC voltage sensorless model predictive control for grid-connected inverter. Electr. Power Autom. Equip. 40(06), 108-114 (2020)
  20. Bonaldo, J.P., Souza, V.A.D., Alonso, A.M.D.S., Arenas, L.D.O., Marafao, F.P.: Adaptive power factor regulation under asymmetrical and non-sinusoidal grid condition with distributed energy resource. IEEE Access 9, 140487-140503 (2021) https://doi.org/10.1109/ACCESS.2021.3119335
  21. Xie, Y.Y., Liu, Y.X., Guan, Y.P., Zhang, F.: Adaptive model predictive control for LCL three-phase grid-connected inverter. Electr. Mach. Control 25(04), 40-51 (2021)
  22. Hou, B., Liu, J.W., Dong, F.B., Mu, A.: An adaptive complementary sliding-mode control strategy of single-phase voltage source inverters. J. Electr. Eng. Technol. 13(1), 168-180 (2018)
  23. Chen, X.G., Li, Y.M., Ma, H.F., Tang, H.: A novel variable exponential discrete time sliding mode reaching law. IEEE Trans. Circuits Syst. II Express Briefs 68(7), 2518-2522 (2021)
  24. Chen, Q., Zhu, J.H., Tao, M.L.: Two-phase power reaching law-based spacecraft attitude control. Control Decis. 37(05), 1145-1152 (2022)
  25. Hou, B., Liu, J.W., Dong, F.B.: Inverter sliding mode control based on load current sliding mode observation. Power Electron. 1, 74-77 (2017)