DOI QR코드

DOI QR Code

Analysis and research on magnetic modulation mechanism of axial field flux-switching composite machines

  • Rui Wang (School of Electrical Engineering, Nantong University) ;
  • Wei Zhang (School of Electrical Engineering, Nantong University) ;
  • Xiaobin Xu (School of Electrical Engineering, Nantong University) ;
  • Jianwei Zhao (School of Electrical Engineering, Nantong University)
  • Received : 2022.03.30
  • Accepted : 2022.11.28
  • Published : 2023.05.20

Abstract

To improve the performance of low-speed large-torque direct drive systems in limited space, an axial field flux-switching composite machine (AFFSCM) is proposed in this paper. The AFFSCM is composed of an axial field flux-switching permanent magnet machine (AFFSPMM) and magnetic gear. Therefore, it has the advantages of a compact structure, a large power/torque density, and a wide speed regulation range. First, the topology and magnetic modulation mechanism of the AFFSCM are investigated in detail. Then, the harmonic components of the inner/outer air-gap flux density are analyzed before and after the regulation of the rotary magnetic modulation ring. Based on this, the coupling conditions of the inner/outer air-gap magnetic field are deduced. Then the AFFSCM is initially designed, a three-dimensional finite-element model of the AFFSCM is built, and the electromagnetic performances are analyzed by the finite-element method, including the flux density of the inner/outer air-gap, the speed, the static torque, etc. Next, the cogging torque of the AFFSPMM is analyzed and optimized based on the magnetic modulation mechanism to suppress the torque ripple of the AFFSCM. Finally, an 800 W prototype is constructed and related experiments are done to validate the AFFSCM.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (NSFC): [Grant No. 51507087], and Natural Science Foundation of Jiangsu Province (NSFJP): [Grant No. BK20211332].

References

  1. Lee, J.G., Lim, D.K.: A stepwise optimal design applied to an interior permanent magnet synchronous motor for electric vehicle traction applications. IEEE Access 9, 115090-115099 (2021) https://doi.org/10.1109/ACCESS.2021.3105119
  2. Wang, X., Wan, Z., Tang, L., Xu, W., Zhao, M.: Electromagnetic performance analysis of an axial flux hybrid excitation motor for HEV drives. IEEE Trans. Appl. Supercond. 31(8), 1-5 (2021)
  3. Feng, Y., Li, F., Huang, S., Yang, N.: Variable-flux outer-rotor permanent magnet synchronous motor for in-wheel direct-drive applications. Chin. J. Electr. Eng. 4(1), 28-35 (2018)
  4. Chau, T.: Electric vehicle machine and drivers: design, analysis and application, pp. 35-37. IEEE Press, Wiley (2015)
  5. Aydin, M., Gulec, M.: A new coreless axial flux interior permanent magnet synchronous motor with sinusoidal rotor segments. IEEE Trans. Magn. 52(7), 1-4 (2016) https://doi.org/10.1109/TMAG.2016.2522950
  6. Zhao, W., Byung-il, K., Thomas, A.L., et al.: Dual airgap stator-and rotor-permanent magnet machines with spoke-type configurations using phase-group concentrated-coil windings. IEEE Trans. Ind. Appl. 53(4), 3327-3335 (2017) https://doi.org/10.1109/TIA.2017.2681618
  7. Jian, Z., Wenxiang, Z., Jinghua, Ji., et al.: Comparative investigation of concentrated winding and vernier double-stator permanent-magnet motors. Int. J. Appl. Electromagn. Mech. 53(3), 387-395 (2016) https://doi.org/10.3233/JAE-160026
  8. Da, X., Lin, M., Xinghe, F., et al.: Static characteristics of novel hybrid axial field flux-switching PM machines. Trans. China Electrotechn. Soc. 30(2), 58-63 (2015)
  9. Xiping, L., Dong, C., Min, W., et al.: Analysis of mechanical dynamics and flux weakening ability for a variable flux axial field permanent magnet electrical machine. Trans. China Electrotechn. Soc. 31(23), 54-62 (2016)
  10. Li, N., Fu, X.H., Zhu, J.G., et al.: Hybrid-excited series permanent magnet axial Field flux switching memory machine. IEEE Trans. Appl. Supercond. 29(2), 1-5 (2019)
  11. Aiso, K., Akatsu, K., Aoyama, Y.: A novel reluctance magnetic gear for high-speed motor. IEEE Trans. Ind. Appl. 55(3), 2690- 2699 (2019) https://doi.org/10.1109/TIA.2019.2900205
  12. Ito, K., Nakamura, K.: Investigation of magnetic interaction of IPM-type magnetic-geared motor. IEEE Trans. Magn. 57(2), 1-5 (2021) https://doi.org/10.1109/TMAG.2020.3020121
  13. Liu, C., Yu, J., Lee, C.: A new electric magnetic-geared machine for electric unmanned aerial vehicles. IEEE Trans. Magn. 53(11), 1-6 (2017) https://doi.org/10.1109/TMAG.2017.2707066
  14. Zhang, X., Liu, X., Chen, Z.: A novel coaxial magnetic gear and its integration with permanent magnet brushless motor. IEEE Trans. Magn. 52(7), 1-4 (2016)
  15. Atallah, K., Rens, J., Mezani, S., Howe, D.: A novel 'Pseudo' direct drive brushless permanent magnet machine. IEEE Trans. Magn. 44(11), 4349-4352 (2008) https://doi.org/10.1109/TMAG.2008.2001509
  16. Wang, Q., Niu, S., Yang, S.: Design optimization and comparative study of novel magnetic-geared permanent magnet machines. IEEE Trans. Magn. 53(6), 1-4 (2017)
  17. Xiaohua, B., Jiwei, L., Yue, S., et al.: Review and prospect of low-speed high-torque permanent magnet machines. Trans. China Electrotechn. Soc. 34(06), 1148-1160 (2019)
  18. Hao, L., Lin, M., Li, W., et al.: Novel dual-rotor axial field flux-switching permanent magnet machine. IEEE Trans. Magn. 48(11), 4232-4235 (2012) https://doi.org/10.1109/TMAG.2012.2204964
  19. Li, X.-Y., Li, C.-P., et al.: Design of a PCB stator coreless axial flux permanent magnet synchronous motor based on a novel topology Halbach array. Front. Inf. Technol. Electr. Eng. 20(03), 414-424 (2019) https://doi.org/10.1631/FITEE.1700345
  20. Xu, D., Lin, M., Fu, X., et al.: Cogging torque reduction of a hybrid axial field flux-switching permanent-magnet machine with three methods. IEEE Trans. Appl. Supercond. 26(04), 1-5 (2016)